「计算机控制技术」零阶保持器和一阶保持器的频率特性分析

本文分析了零阶保持器(ZOH)和一阶保持器(FOH)的频率特性。通过传递函数和Bode图展示了两者在幅频和相频特性上的差异。ZOH表现为低通滤波器,存在相位滞后;而FOH的幅值跳变更快,相位滞后更严重。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Author:AXYZdong 自动化专业 工科男
有一点思考,有一点想法,有一点理性!
定个小小目标,努力成为习惯!在最美的年华遇见更好的自己!
CSDN@AXYZdong,CSDN首发,AXYZdong原创
唯一博客更新的地址为: 👉 AXYZdong的博客 👈
B站主页为:AXYZdong的个人主页

零阶保持器(ZOH)频率特性分析

零阶保持器传递函数:

G ( s ) = 1 − e − T s s G(s)=\frac{1-e^{-Ts}}{s} G(s)=s1eTs

画 Bode 图进行频率分析:

s=tf('s');
T=0.1; %采样周期0.1s
G=(1-exp(-T*s))/s;
bode(G);

在这里插入图片描述

▲ 零阶保持器幅相特性

从图中可以看出:随着频率 ω \omega ω 的的增加,当 ω \omega ω 1 0 2 10^2 102 附近时,零阶保持器的幅值和相位开始发生跳变。

  • 幅频特性中,幅值达到最低时立即发生跳变至最高,保持稳定后再次跳变至最低,如此往复;
  • 相频特性中,相位滞后,在 − 18 0 。 − 0 。 -180^。- 0^。 1800 之间呈锯齿状变化;
  • 从图中可以看出,零阶保持器是一个低通滤波器,但不是一个理想低通滤波器,高频信号通过零阶保持器不能完全消除,同时产生相位滞后

一阶保持器(FOH)频率特性分析

一阶保持器传递函数:

G ( s ) = T ( 1 + T s ) ( 1 − e − T s T s ) 2 G(s)=T(1+Ts) \left(\frac{1-e^{-Ts}}{Ts}\right)^2 G(s)=T(1+Ts)(Ts1eTs)2

画 Bode 图进行频率分析:

s=tf('s');
T=0.1; %采样周期0.1s
G=T*(1+T*s)*((1-exp(-s*T))/(T*s))^2;
bode(G);

在这里插入图片描述

▲ 一阶保持器幅相特性

从图中可以看出:随着频率 ω \omega ω 的的增加,当 ω \omega ω 1 0 2 10^2 102 附近时,一阶保持器的幅值开始发生跳变。

  • 幅频特性中,幅值达到最低时立即发生跳变至最高,与零阶保持器相比,变化更快;
  • 相频特性中,相位大小一直增加,相位滞后更加严重。


如果我的博客对你有帮助、如果你喜欢我的博客内容,请 “点赞” “评论” “收藏” 一键三连哦!
听说 👉 点赞 👈 的人运气不会太差,每一天都会元气满满呦!^ _ ^ ❤️ ❤️ ❤️

如果以上内容有任何错误或者不准确的地方,欢迎在下面 👇 留个言。或者你有更好的想法,欢迎一起交流学习~~~

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AXYZdong

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值