一、LLM简介

一、什么是LLM(大语言模型)

LLM的概念

LLM通常指的是百亿级别参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。目前,国外的知名 LLM 有 GPT-3.5、GPT-4、PaLM、Claude 和 LLaMA 等,国内的有文心一言、讯飞星火、通义千问、ChatGLM、百川等。

二、 LLM的能力和特点

2.1 LLM的能力

2.1.1 涌现能力(emergent abilities)

LLM中三个典型的涌现能力:

  1. 上下文学习能力:允许语言模型在提供自然语言指令或多个任务示例的情况下,通过理解上下文并生成相应输出的方式来执行任务,而无需额外的训练或参数更新。
  2. 指令遵循:通过使用自然语言描述的多任务数据进行微调,也就是所谓的指令微调。LLM 被证明在使用指令形式化描述的未见过的任务上表现良好。这意味着 LLM 能够根据任务指令执行任务,而无需事先见过具体示例,展示了其强大的泛化能力。
  3. 逐步推理:LLM 通过采用思维链(CoT, Chain of Thought) 推理策略,利用包含中间推理步骤的提示机制来解决这些任务,从而得出最终答案。据推测,这种能力可能是通过对代码的训练获得的。

涌现能力是区分大语言模型(LLM)与以前的预训练语言模型(PLM)最显著的特征之一。

2.1.2 作为基座模型支持多元应用的能力

基座模型(foundation model):是一种全新的 AI 技术范式,借助于海量无标注数据的训练,获得可以适用于大量下游任务的大模型(单模态或者多模态)。这样,多个应用可以只依赖于一个或少数几个大模型进行统一建设

2.1.3 支持对话作为统一入口的能力

让大语言模型真正火爆的契机,是基于对话聊天的 ChatGPT。业界很早就发现了用户对于对话交互的特殊偏好,陆奇在微软期间,就于 2016 年推进过“对话即平台(conversation as a platform)” 的战略。此外,苹果 Siri 、亚马逊 Echo 等基于语音对话的产品也非常受欢迎,反映出互联网用户对于聊天和对话这种交互模式的偏好

2.2 LLM的特点

大语言模型具有多种显著特点:

  1. 巨大的规模: LLM 通常具有巨大的参数规模,可以达到数十亿甚至数千亿个参数。这使得它们能够捕捉更多的语言知识和复杂的语法结构。
  2. 预训练和微调: LLM 采用了预训练和微调的学习方法。首先在大规模文本数据上进行预训练(无标签数据),学习通用的语言表示和知识。然后通过微调(有标签数据)适应特定任务,从而在各种 NLP 任务中表现出色。
  3. 上下文感知: LLM 在处理文本时具有强大的上下文感知能力,能够理解和生成依赖于前文的文本内容。这使得它们在对话、文章生成和情境理解方面表现出色。
  4. 多语言支持: LLM 可以用于多种语言,不仅限于英语。它们的多语言能力使得跨文化和跨语言的应用变得更加容易。
  5. 多模态支持: 一些 LLM 已经扩展到支持多模态数据,包括文本、图像和声音。使得它们可以理解和生成不同媒体类型的内容,实现更多样化的应用。
  6. 伦理和风险问题: 尽管 LLM 具有出色的能力,但它们也引发了伦理和风险问题,包括生成有害内容、隐私问题、认知偏差等。因此,研究和应用 LLM 需要谨慎。
  7. 高计算资源需求: LLM 参数规模庞大,需要大量的计算资源进行训练和推理。通常需要使用高性能的 GPU 或 TPU 集群来实现。

三、LLM的应用与影响

自然语言处理领域:它可以帮助计算机更好地理解和生成文本,包括写文章、回答问题、翻译语言等。
信息检索领域:它可以改进搜索引擎,让我们更轻松地找到所需的信息。
计算机视觉领域:研究人员还在努力让计算机理解图像和文字,以改善多媒体交互。

LLM 的出现让人们重新思考了通用人工智能(AGI)的可能性。AGI 是一种像人类一样思考和学习的人工智能。LLM 被认为是 AGI 的一种早期形式,这引发了对未来人工智能发展的许多思考和计划。

### 大型语言模型(LLM)概述 大型语言模型(LLM)是类基于深度学习技术构建的自然语言处理(NLP)模型,尤其依赖于复杂的神经网络架构。这些模型通过海量文本数据集进行训练,从而获得理解并生成人类语言的能力[^3]。 #### 主要特点 - **强大的泛化能力**:经过大规模语料库训练后的LLM能够适应多种未见过的任务或提示,即使这些任务并未直接出现在训练集中[^2]。 - **上下文感知**:LLM可以捕捉输入序列中的长期依赖关系,并据此做出更合理的预测和推理。 - **灵活性高**:得益于其端到端的学习机制以及文本到文本转换的方式,使得这类模型非常适合执行诸如链接预测之类的复杂KG任务。 #### 应用领域 LLM广泛应用于多个方面,包括但不限于: - 自动对话系统 - 文本分类与聚类 - 机器翻译服务 - 情感倾向评估 - 内容创作辅助 #### 名牌实例 当前知名的几个大型语言模型有BERT、GPT系列、Llama、Gemini及Flan-T5等版本,在各自擅长的方向上各有千秋。 --- ### 使用框架简介 为了有效利用LLM完成特定应用场景下的开发工作,通常会选择合适的开源框架作为支撑平台。以下是几种常见的选择: 1. **Hugging Face Transformers** Hugging Face提供了丰富的预训练模型资源库和支持多样的下游任务微调接口。开发者可以通过简单的API调用来加载指定类型的LLM,并针对具体需求调整参数配置。 2. **TensorFlow/PyTorch** 这两个主流深度学习框架均支持自定义搭建LLM结构,同时也兼容许多已有的优秀项目成果。对于希望深入研究内部原理或者探索新型算法的设计人员来说是非常理想的选择。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("gpt2") # 加载GPT-2分词器 model = AutoModelForCausalLM.from_pretrained("gpt2") # 初始化GPT-2模型 input_text = "Once upon a time" inputs = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**inputs, max_length=50) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` 上述代码片段展示了如何借助`transformers`库快速启动个基于GPT-2的小说开头续写程序[^1]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值