基于YOLOX网络的SAR图像舰船目标检测

摘 要:针对 SAR 图像舰船目标尺寸大小不一、舰船分布密集、背景复杂等问题,本文提出一种改进 YO⁃ LOX网络并用于SAR图像舰船目标检测。该网络包括主干特征提取网络、加强特征提取网络、解耦头、预测框优 化及损失计算等 4个部分。与常规YOLOX网络相比,本文作了如下改进:首先,在主干特征提取网络中,3个基 础特征层之后都添加了CA模块;在加强特征提取网络中,两处下采样之后也都添加了CA模块。以强化对SAR 图像中重要区域的特征提取。其次,在框回归损失函数中,引入CIOU替代IOU,以更好地利用预测框和真实框 之间的相对位置信息和形状信息,提升预测框回归精度。本文基于AIR⁃SARSHIP⁃2.0数据集进行了大量的舰船 目标检测实验,并选择了Faster⁃RCNN、YOLOv3和常规YOLOX等3种网络与本文的改进YOLOX网络进行对比。 实验结果表明,本文的改进YOLOX网络整体性能优于其他3种对比网络,有更少的虚警和漏警、更高的检测精度。

关键词:深度学习;YOLOX;SAR图像;舰船目标检测

0 引 言

        合成孔径雷达(Synthetic Aperture Radar, SAR) 是一种在民用和军事诸多领域具有广泛应用前景 的主动式高分辨率对地观测系统,不受光照和气 候条件的影响,为国内外广大学者所关注[1⁃2] 。 近年来,以卷积神经网络(Convolutional Neu⁃ral Network,CNN)[3] 为代表的深度学习发展迅速, 不仅在处理光学图像处理中取得不俗的成绩[4] ,在 SAR 图像处理[5⁃10]中也取得显著效果。与传统的 SAR 图像目标检测方法依赖人工设计提取复杂特 征相比,CNN通过神经网络自动完成特征提取,实 现了“端到端”的处理流程,减少人为干预。 基于卷积神经网络的目标检测算法,根据其网络结构可分为双阶段(two⁃stage)检测算法和单 阶段(one⁃stage)检测算法两大类。双阶段检测算 法首先要生成若干比例、尺寸不一且可能包含物 体的候选区域(region proposals),然后将候选区域 送入网络进行目标检测,该类模型主要包括 R ⁃ CNN、Fast⁃RCNN、Faster⁃RCNN[11] 等。单阶段检测 算法不需要产生候选区域,直接在网络中提取特 征来预测物体的位置和类别,该类模型主要包括 SSD和YOLO[12] 系列方法。

        2016 年 Redmon 等提出了 YOLO 算法,提出将 候选区域划定和目标分类识别这两个阶段合二为 一的方法,虽然在精度上并未超过 Faster⁃RCNN, 但在速度上有不少的提升。2017年该作者再次提 出YOLOv2算法,提出一种检测与分类联合训练方 法,大大降低了计算复杂度,在准确率、速度、识别 种类三方面得到了改进。2018年4月,该作者又提 出YOLOv3 [13] 算法,该算法在保持速度优势的前提 下,进一步提高了检测精度,尤其是对小目标的检 测能力。至此其综合性能,无论是速度和精度,都 已经超过双阶段检测算法。2020 年 4 月 23 日, Alexey Bochkovskiy 提出了 YOLOv4 网络模型。同 年 5 月 30 日,Glenn Jocher 在 GitHub 上发布了 YO⁃ LOv5 网络模型。2021 年 7 月,北京旷视科技发布 了最新的 YOLOX[14]模型,该模型引入了 Anchor ⁃ Free、Decoupled Head 等思想,进一步提升了模型 在图像目标检测与识别中的精度和速度。 国内外很多研究人员都在SAR图像目标检测 与识别中引入了深度学习算法,并且取得了不错的成果。李健伟等构建了国内首个SAR图像舰船 公开数据集 SSDD,并用其训练 Faster ⁃ RCNN 网 络[15] ,证明了相比传统算法,深度学习算法的优越 性。曹磊等将 Faster⁃RCNN 网络用于 SAR 图像车 辆目标检测[16] ,并加以改进,使其收敛速度更快, 检测精度更高。Hu等提出了一种专门用于船舶检 测的双极化 SAR 数据集(DSSDD),并提出一种基 于异常检测的弱监督船舶检测方法[17] 。

         在SAR图像舰船目标检测中,针对舰船目标尺 寸大小不一、舰船分布密集、背景复杂等问题,本文 提出一种基于YOLOX网络的SAR图像舰船目标检 测与识别算法。在YOLOX网络的基础上,引入CI⁃ OU(Complete⁃IOU)来代替交并比(IOU, Intersection over Union),以得到更加合理的总体损失函数,提 高对尺寸大小不一的舰船目标的检测准确性。在 其主干特征提取网络之后以及加强特征提取网络 之中加入坐标注意力(CA, Coordinate Attention)机 制模块,以便在大量图像特征信息中,对当前任务 更加关键的特征信息会被赋予更高的关注度。本 文基于SAR舰船检测数据集进行了大量的实验验 证,结果表明,与所选用的对比网络相比,本文的 改进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BinaryStarXin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值