摘 要: 为提高雷达旋翼无人机的识别效果,本文提出一种基于多域特征融合的旋翼无人机分类方法。首 先利用K波段连续波(Continuous Wave,CW)雷达观测多旋翼无人机,对采集到的雷达回波信号进行信号处理依 次得到时频图、节奏速度图(Cadence⁃Velocity Diagram, CVD)和节奏频谱图(Cadence Frequency Spectrum,CFS), 然后将时频图和CVD图分别输入SqueezeNet网络,CFS数据输入一维卷积神经网络(1⁃D⁃CNN)提取回波信号在 时频域、节奏速度域和节奏频率域的特征,最后将特征融合输入支持向量机(Support Vector Machine, SVM)进行 分类。实测雷达数据处理的结果表明基于多域特征融合的旋翼无人机分类识别方法对三类旋翼无人机的分类 准确率达到99.14%。
关键词:旋翼无人机分类;多域特征融合;SqueezeNet网络;支持向量机
0 引 言
近些年,由于无人机技术高速发展,旋翼无人 机已逐步应用于各个行业领域。无人机便于携 带、放飞条件便利,具备载物的功能,可以越过机 场围界侵入机场内部,或者向机场围界内投掷物 品。同时围绕因民用无人机“黑飞”导致的炸机伤 人、侵犯隐私、扰乱航空秩序等不法行为时有发 生。其中,扰乱航空秩序最为严重,可能造成的伤 害和潜在的公共安全威胁最为严重、直接[1⁃2] 。传统的小型旋翼无人机探测技术大致包括雷达探 测、声波探测、光电探测、电视广播探测、无线电频 谱探测等。其中雷达探测方法探测距离远、定位 目标准确并且反应效率高,与其他探测方法相比 具有明显的优势,因此雷达探测被广泛应用。由 于小型旋翼无人机具有体积小、重量轻等特点,且 飞行速度慢、高度低,传统的无人机检测方法会产 生较大的盲点。随着深度卷积神经网络在计算机 视觉领域的显著影响,越来越多的人将雷达探测 和深度学习结合应用于无人机的图像分类和目标检测中[3] 。
微多普勒特征是研究旋翼无人机分类识别的 热点,雷达探测能测量运动物体的微多普勒特性。 微多普勒特征除了主体运动(例如转子叶片)外, 还取决于物体移动和旋转的部分,因此是物体类 型的特征[4⁃5] 。现阶段多利用微多普勒特征处理小 型无人直升机和多旋翼无人机的分类问题。文献 [6]提出了采用单元平均恒虚警处理(Cell Average Constant False Alarm Rate, CA⁃CFAR)的方法检测 距离多普勒图(Range⁃Doppler, RD)中的目标,通过 提取频谱中的微多普勒特征来区分悬停无人机与 地面杂波。全世界每年约发生一万多起鸟撞飞机 导致的空中险情和空难,由于高空中飞行的鸟类 体积大小和飞行速度与无人机相似[7⁃8] ,因此对于 无人机和鸟类的分类也十分重要,文献[9]采用投 影度量学习(Projection Metric Learning, PML)对鸟 类和三类无人机的微多普勒特征进行识别评估。 微多普勒特征在时域上显示多普勒信息,在频域 表 示 为 节 奏 速 度 图(Cadence ⁃ Velocity Diagram, CVD)。因此文献[10]为了同时对时域和频域上 的无人机微多普勒信息进行分析,提出了一种将 微多普勒特征和 CVD 相结合的新图像,称为合并 多普勒图像(Merged Doppler Image,MDI),传输到 GoogLeNet网络中进行分类识别。
上述方法大多网络结构复杂且仅在单个或两 个域中分析微多普勒特征,导致特征单一对后续 分类工作产生影响,使准确率普遍偏低。本文采 用三通道卷积神经网络(Convolution Neural Net⁃ works, CNN)同时提取多旋翼无人机的雷达回波信 号特征的分类方法,分别在时频域和节奏速度域 利用SqueezeNet网络进行提取信号特征,在节奏频 率域利用一维卷积神经网络(1⁃D⁃CNN)提取信号 特征,将三个域的特征进行融合,最后输入支持向 量机(Support Vector Machine, SVM)中进行分类。