应用随机过程笔记 第二周

第一天

老师上来就BBlailai说我们不会射频电路,好吧我菜。
电路过程是随机过程,老师告诉我们在做matlab仿真时,一定要注意噪声的带通性:如果噪声经过了滤波器,便不再是简单的randn()或者AWGN。

2.1.1概念

定义2.1:

给定参数集 T \textbf T T和概率空间 { Ω , F , P } \{\Omega, \mathbb F, P\} {Ω,F,P},依赖参数 t ∈ T t\in\mathbf T tT的一族随机变量 { X ( ξ , t ) , ξ ∈ Ω , t ∈ T } \{X(\xi,t),\xi\in\Omega,t\in T \} {X(ξ,t),ξΩ,tT}称为随机过程(Stochastic process or random process),记为 X ( ξ , t ) X(\xi,t) X(ξ,t) X ( t ) X(t) X(t)

比如:电子系统电路噪声,到达服务机构的人数和到达时刻,通信基站用户的接入数等。

2.1.2 基本特性

随机过程是含参数 t t t的随机变量,可以带 t t t的随机变量 X ( ξ , t ) X(\xi,t) X(ξ,t)描述其特性。
ξ , t \xi ,t ξ,t都不确定时,我们可以把这个成为 随机过程

有限维分布函数

(1)n维概率分布函数
F ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) = F X ( t 1 ) , X ( t 2 ) , . . . , X ( t n ) ( x 1 , x 2 , . . . , x n ) = P [ X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , . . . , X ( t n ) ≤ x n ] \begin{aligned} F(x_1,x_2,...,x_n;t_1,t_2,...,t_n)&=F_{X(t_1),X(t_2),...,X(t_n)}(x_1,x_2,...,x_n)\\ &=P[X(t_1)\leq x_1,X(t_2)\leq x_2,...,X(t_n)\leq x_n] \end{aligned} F(x1,x2,...,xn;t1,t2,...,tn)=FX(t1),X(t2),...,X(tn)(x1,x2,...,xn)=P[X(t1)x1,X(t2)x2,...,X(tn)xn]
易于理解, x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn可以认为是 ξ \xi ξ,参数。易于理解, t 1 , t 2 , . . . , t n t_1,t_2,...,t_n t1,t2,...,tn可以认为是 t t t,时间。
(2)n维概率密度函数
f ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) 满 足 F ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) = ∫ − ∞ x n . . . ∫ − ∞ x 2 ∫ − ∞ x 1 f ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) d x 1 d x 2 . . . d x n f(x_1,x_2,...,x_n;t_1,t_2,...,t_n)满足\\ F(x_1,x_2,...,x_n;t_1,t_2,...,t_n)=\int_{-\infty}^{x_n}...\int_{-\infty}^{x_2}\int_{-\infty}^{x_1}f(x_1,x_2,...,x_n;t_1,t_2,...,t_n)dx_1dx_2...dx_n f(x1,x2,...,xn;t1,t2,...,tnF(x1,x2,...,xn;t1,t2,...,tn)=xn...x2x1f(x1,x2,...,xn;t1,t2,...,tn)dx1dx2...dxn
(3)n维特征函数
其定义为:
ϕ ( v 1 , v 2 , . . . , v n ; t 1 , t 2 , . . . , t n ) = E { e x p [ j ( v 1 X ( t 1 ) + v 2 X ( t 2 ) + . . . + v n X ( t n ) ] } \phi(v_1,v_2,...,v_n;t_1,t_2,...,t_n)=E\{exp[j(v_1X(t_1)+v_2X(t_2)+...+v_nX(t_n)]\} ϕ(v1,v2,...,vn;t1,t2,...,tn)=E{exp[j(v1X(t1)+v2X(t2)+...+vnX(tn)]}
这里的 v v v是确定的实变量,我们在上周的笔记中将提到。
其拥有对称性,相容性
对称性指随意排列 x , t x,t x,t与函数无关。
相容性指高维的边缘分布与相应的地位分布是一致的。

定义2.1 Kolmogonov概率分布函数存在定理

这玩意证明复杂,复旦的一本概率书证明了8页。

基本数字特征

基本数字特征公式
(1)均值 m X ( t ) = E [ X ( t ) ] m_X(t)=E[X(t)] mX(t)=E[X(t)]
(2)自相关函数 R X ( t 1 , t 2 ) = E [ X ( t 1 ) X ( t 2 ) ] R_X(t_1,t_2)=E[X(t_1)X(t_2)] RX(t1,t2)=E[X(t1)X(t2)]
(3)方差和标准差 σ X 2 或 者 D [ X ( t ) ] 或 者 V a r [ X ( t ) ] = \sigma^2_X或者D[X(t)]或者Var[X(t)]= σX2D[X(t)]Var[X(t)]=
E [ X ( t ) − m X ( t ) ] 2 = E [ X 2 ( t ) ] − m X 2 ( t ) E[X(t)-m_X(t)]^2=E[X^2(t)]-m_X^2(t) E[X(t)mX(t)]2=E[X2(t)]mX2(t)
标 准 差 σ X = D [ X ( t ) ] 标准差\sigma_X=\sqrt{D[X(t)]} σX=D[X(t)]
(4)均方差 E [ X 2 ( t ) ] = R X ( t , t ) E[X^2(t)]=R_X(t,t) E[X2(t)]=RX(t,t)
(5)协方差函数 (相关性, 统计独立性) C X ( t , t ) = E { [ X ( t 1 ) − m X ( t 1 ) ] [ X ( t 2 ) − m X ( t 2 ) ] } C_X(t,t)=E\{[X(t_1)-m_X(t_1)] [X(t_2)-m_X(t_2)] \} CX(t,t)=E{[X(t1)mX(t1)][X(t2)mX(t2)]}
= R X ( t 1 , t 2 ) − m X ( t 1 ) m X ( t 2 ) =R_X(t_1,t_2)-m_X(t_1)m_X(t_2) =RX(t1,t2)mX(t1)mX(t2)
(6)相关系数 (正交性) ρ X ( t 1 , t 2 ) = C x ( t 1 , t 2 ) σ X ( t 1 ) σ X ( t 2 ) \rho_X(t_1,t_2)=\frac{C_x(t_1,t_2)}{\sigma_X(t_1)\sigma_X(t_2)} ρX(t1,t2)=σX(t1)σX(t2)Cx(t1,t2)

联合特性和复过程

联合概率密度函数

F X Y ( x , y ; t , s ) = P [ X ( t ) ≤ x ; Y ( s ) ≤ y ] F_{XY}(x,y;t,s)=P[X(t)\leq x;Y(s)\leq y] FXY(x,y;t,s)=P[X(t)x;Y(s)y]
这里的 s s s是另一个时间参数。

(n+m)维联合概率分布函数

从上面的式子扩展:
F X Y ( x 1 , x 2 , . . . , x n ; y 1 , y 2 , . . . , y m ; t 1 , t 2 , . . . , t n ; s 1 , s 2 , . . . , s m ) = P [ X ( t 1 ) ≤ x 1 , X ( t 2 ) ≤ x 2 , . . . , X ( t n ) ≤ x n ; Y ( s 1 ) ≤ y 1 , Y ( s 2 ) ≤ s 2 , . . . , Y ( s m ) ≤ s m ] \begin{aligned} &F_{XY}(x_1,x_2,...,x_n;y_1,y_2,...,y_m;t_1,t_2,...,t_n;s_1,s_2,...,s_m)\\ =&P[X(t_1)\leq x_1,X(t_2)\leq x_2,...,X(t_n)\leq x_n;Y(s_1)\leq y_1,Y(s_2)\leq s_2,...,Y(s_m)\leq s_m] \end{aligned} =FXY(x1,x2,...,xn;y1,y2,...,ym;t1,t2,...,tn;s1,s2,...,sm)P[X(t1)x1,X(t2)x2,...,X(tn)xn;Y(s1)y1,Y(s2)s2,...,Y(sm)sm]

(n+m)维联合概率密度函数

同理,我们可以推导
f X Y ( x 1 , x 2 , . . . , x n ; y 1 , y 2 , . . . , y m ; t 1 , t 2 , . . . , t n ; s 1 , s 2 , . . . , s m ) = ∂ n + m F X Y ( x 1 , x 2 , . . . , x n ; y 1 , y 2 , . . . , y m ; t 1 , t 2 , . . . , t n ; s 1 , s 2 , . . . , s m ) ∂ x 1 ∂ x 2 . . . ∂ x n ∂ y 1 ∂ y 2 . . . ∂ y m \begin{aligned} &f_{XY}(x_1,x_2,...,x_n;y_1,y_2,...,y_m;t_1,t_2,...,t_n;s_1,s_2,...,s_m)\\ =&\frac{\partial ^{n+m}F_{XY}(x_1,x_2,...,x_n;y_1,y_2,...,y_m;t_1,t_2,...,t_n;s_1,s_2,...,s_m)}{\partial x_1\partial x_2...\partial x_n\partial y_1\partial y_2...\partial y_m} \end{aligned} =fXY(x1,x2,...,xn;y1,y2,...,ym;t1,t2,...,tn;s1,s2,...,sm)x1x2...xny1y2...ymn+mFXY(x1,x2,...,xn;y1,y2,...,ym;t1,t2,...,tn;s1,s2,...,sm)

(n+m)维联合特征函数

Φ X Y ( v 1 , v 2 , . . . , v n ; w 1 , w 2 , . . . , w m ; t 1 , t 2 , . . . , t n ; s 1 , s 2 , . . . , s m ) = E [ e x p j ( ∑ i = 1 n v i X ( t i ) + ∑ i = 1 m w i Y ( s i ) ) ] \begin{aligned} &\Phi_{XY}(v_1,v_2,...,v_n;w_1,w_2,...,w_m;t_1,t_2,...,t_n;s_1,s_2,...,s_m)\\ =&E[\mathbf{exp}j(\sum_{i=1}^nv_iX(t_i)+\sum_{i=1}^mw_iY(s_i))] \end{aligned} =ΦXY(v1,v2,...,vn;w1,w2,...,wm;t1,t2,...,tn;s1,s2,...,sm)E[expj(i=1nviX(ti)+i=1mwiY(si))]

X − Y X-Y XY联合数字特征
X − Y X-Y XY联合数字特征公式
(1)互相关函数 R X Y ( t , s ) = E [ X ( t ) Y ( s ) ] R_{XY}(t,s)=E[X(t)Y(s)] RXY(t,s)=E[X(t)Y(s)]
(2)互协方差函数 (相关性, 统计独立性) C X Y ( t , s ) = E { [ X ( t ) − m X ( t ) ] [ Y ( s ) − m Y ( s ) ] } C_{XY}(t,s)=E\{[X(t)-m_X(t)] [Y(s)-m_Y(s)] \} CXY(t,s)=E{[X(t)mX(t)][Y(s)mY(s)]}
= R X Y ( t , s ) − m X ( t ) m Y ( s ) =R_{XY}(t,s)-m_X(t)m_Y(s) =RXY(t,s)mX(t)mY(s)
(3)互相关系数 (正交性) ρ X Y ( t , s ) = C X Y ( t , s ) σ X ( t ) σ Y ( s ) \rho_{XY}(t,s)=\frac{C_{XY}(t,s)}{\sigma_X(t)\sigma_Y(s)} ρXY(t,s)=σX(t)σY(s)CXY(t,s)
复随机过程

Z ( t ) = X ( t ) + j Y ( t ) Z(t)=X(t)+jY(t) Z(t)=X(t)+jY(t)
X ( t ) , Y ( t ) X(t),Y(t) X(t),Y(t)定义在同一概率空间和参数集。
同理,我们可以得出 复过程数字特征:

复过程数字特征公式
(1)均值 m Z ( t ) = E [ Z ( t ) ] = E [ X ( t ) ] + j E [ Y ( t ) ] m_Z(t)=E[Z(t)]=E[X(t)]+jE[Y(t)] mZ(t)=E[Z(t)]=E[X(t)]+jE[Y(t)]
(2)自相关函数 R Z ( t 1 , t 2 ) = E [ Z ( t 1 ) Z ∗ ( t 2 ) ] R_Z(t_1,t_2)=E[ Z(t_1)Z^*(t_2)] RZ(t1,t2)=E[Z(t1)Z(t2)]
(2)互相关函数 R Z 1 , Z 2 ( t 1 , t 2 ) = E [ Z 1 ( t 1 ) Z 2 ∗ ( t 2 ) ] R_{Z_1,Z_2}(t_1,t_2)=E[ Z_1(t_1)Z_2^*(t_2)] RZ1,Z2(t1,t2)=E[Z1(t1)Z2(t2)]
(3)方差 σ Z 2 ( t ) = E [ Z ( t ) − m Z ( t ) ] 2 = E [ Z 2 ( t ) ] − m Z 2 ( t ) \sigma^2_Z(t)=E[Z(t)-m_Z(t)]^2=E[Z^2(t)]-m_Z^2(t) σZ2(t)=E[Z(t)mZ(t)]2=E[Z2(t)]mZ2(t)
= 若 X , Y 正 交 σ X 2 ( t ) + σ Y 2 ( t ) \overset{若X,Y正交}{=}\sigma^2_X(t)+\sigma^2_Y(t) =XYσX2(t)+σY2(t)

第二天

2.1.3举例-随即正弦过程

老师又开始骂了。。。说我们啥都不懂。。。
唉,错的不是我是世界痛痛痛
X ( t ) = A c o s ( Ω t + Θ ) X(t)=Acos(\Omega t+\Theta) X(t)=Acos(Ωt+Θ)
A , Ω , Θ A,\Omega,\Theta A,Ω,Θ部分,或者全部都是随机变量

2.1.4 分类

2.2 平稳性与平稳过程

2.2.1 严/宽平稳随机过程

定义2.2 严(强)平稳过程

∀ t 1 , t 2 , . . . , t n ∈ T , x 1 , x 2 , . . . , x n ∈ R , \forall t_1,t_2,...,t_n\in T,x_1,x_2,...,x_n\in R, t1,t2,...,tnTx1,x2,...,xnR,以及满足 t 1 + u , t 2 + u , . . . , t n + u ∈ T t_1+u,t_2+u,...,t_n+u\in T t1+u,t2+u,...,tn+uT的任意 u u u值,恒有:
F ( x 1 , x 2 , . . . , x n ; t 1 , t 2 , . . . , t n ) = F ( x 1 , x 2 , . . . , x n ; t 1 + u , t 2 + u , . . . , t n + u ) F(x_1,x_2,...,x_n;t_1,t_2,...,t_n)=F(x_1,x_2,...,x_n;t_1+u,t_2+u,...,t_n+u) F(x1,x2,...,xn;t1,t2,...,tn)=F(x1,x2,...,xn;t1+u,t2+u,...,tn+u)
则称它是严格平稳(SSS)过程(或强平稳过程)。如果上式仅对于 n ≤ N n\leq N nN成立,则称随机过程是N阶平稳的。

定义2.3 宽(弱/广义)平稳过程
关系

(1)严平稳一定宽平稳,反之不一定。
(2)特殊过程(比如正态)严平稳与宽平稳等价

联合严(强)平稳过程
联合宽(弱或广义)平稳过程

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值