如何使用YOLOv8代码框架中的RT-DETR

1. RT-DETR

RT-DETR是由由此,百度推出了——RT-DETR (Real-Time DEtection TRansformer) ,一种基于 DETR 架构的实时端到端检测器,其在速度和精度上取得了 SOTA 性能。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

RT-DETR开源的代码在百度自己的飞桨paddlepaddle上,因此非常不便于我们使用。以下介绍一下YOLOv8集成的RT-DETR如何使用。

2. YOLOv8集成的RT-DETR

2.1 下载权重文件

下载官方提供的模型:rtdetr-l.pt。如下图所示。
在这里插入图片描述

由于YOLOv8官方并没有提供RT-DETR的s,m模型,只提供了l,x模型,因此这里使用较小的rtdetr-l模型。
下载的链接(官方Github地址):点击此处

2.2 如何使用

模型结构如下图位置所示:即ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
在这里插入图片描述

YOLOv8集成了RT-DETR的l与x模型
使用Python代码可以使用以下代码:

from ultralytics import RTDETR

# Load a COCO-pretrained RT-DETR-l model
model = RTDETR('rtdetr-l.pt')

# Display model information (optional)
model.info()

# Train the model on the COCO8 example dataset for 100 epochs
results = model.train(data='coco8.yaml', epochs=100, imgsz=640)

# Run inference with the RT-DETR-l model on the 'bus.jpg' image
results = model('path/to/bus.jpg')
    

使用命令,可以如下:
第一行是训练,第二行是预测

# Load a COCO-pretrained RT-DETR-l model and train it on the COCO8 example dataset for 100 epochs
yolo train model=rtdetr-l.pt data=coco8.yaml epochs=100 imgsz=640

# Load a COCO-pretrained RT-DETR-l model and run inference on the 'bus.jpg' image
yolo predict model=rtdetr-l.pt source=path/to/bus.jpg
### 集成 YOLOv10 和 RT-DETR 进行目标检测 #### 背景说明 YOLO系列模型因其快速的推理速度而广受好评,但随着版本更新至YOLOv10,在某些复杂场景下的表现仍有优化的空间。与此同时,RT-DETR通过解决传统YOLO模型中的非最大抑制(NMS)延迟问题并大幅提升推理速度,成为一种极具潜力的目标检测解决方案[^1]。 #### 实现方法概述 为了将YOLOv10与RT-DETR相结合,主要工作集中在两个方面: 1. **融合网络结构设计** -YOLOv10的骨干网作为特征提取部分保留下来。 - 使用RT-DETR特有的Transformer编码器替代原有的头部组件,从而构建一个新的混合框架。 2. **配置调整** - 修改YOLOv10默认设置以适应新加入的RT-DETR模块。 - 特别是在`yaml`配置文件中指定使用RT-DETR的相关参数,确保两者能够无缝对接。 #### 具体操作指南 ##### 步骤一:准备环境 确保安装了必要的依赖库,并获取最新的YOLOv10源码以及RT-DETR预训练权重。 ```bash pip install ultralytics # 假设这是YOLOv10官方支持包的名字 git clone https://github.com/ultralytics/yolov10.git cd yolov10 wget http://path_to_rtdetr_weights/rtdetr.pth ``` ##### 步骤二:修改配置文件 编辑YOLOv10项目根目录下的`models/yolo.yaml`或其他相应配置文件,添加如下内容来启用RT-DETR特性: ```yaml # models/yolo.yaml or similar file rtdetr: enabled: true weights_path: ./weights/rtdetr.pth ``` ##### 步骤三:编写自定义检测脚本 创建一个Python脚本来加载上述配置好的模型,并执行测试图片上的预测任务。 ```python from ultralytics import yolo_v10_with_rtdetr as detector if __name__ == "__main__": model = detector.load_model('yolo.yaml') image_paths = ['test_image_1.jpg', 'test_image_2.png'] results = model.predict(image_paths) for result, img_path in zip(results, image_paths): print(f"Predictions on {img_path}:") for box in result['boxes']: label = f"{box.label} ({round(box.confidence * 100)}%)" print(label) ``` 此段代码假设有一个名为`detector.py`的文件存在于`ultralytics`包内,负责处理YOLOv10和RT-DETR之间的交互逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

有趣的野鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值