YOLO-v8和RT-DETR比较

https://blog.csdn.net/litt1e/article/details/128804663

yolo的优缺点

https://wenku.csdn.net/answer/6t0v21vok6

YOLOV8是一种目标检测算法,它在YOLO系列的基础上进行了改进和优化。以下是YOLO V8的优缺点:

优点:1.高速度:YOLOV8采用单阶段的检测方法,将目标检测任务转化为一个回归问题,因此速度非常快,适用于实时应用场景。

⒉.较高的准确率: YOLO V8在YOLO系列的基础上进行了改进,通过引入更多的技术手段,如特征金字塔网络、注意力机制等,提升了检测的准确率。

3.多尺度检测: YOLO V8能够在不同尺度下进行目标检测,可以检测到不同大小的目标。

4.简单易用: YOLO V8的网络结构相对简单,易于理解和实现,对于初学者来说比较友好。

缺点:

1.相对较大的模型尺寸:为了提高准确率,YOLO V8引入了更多的技术手段和网络结构,导致模型尺寸相对较大,需要更多的计算资源和存储空间。

⒉对小目标检测效果较差:由于YOLOV8采用了多尺度检测的策略,对于小目标的检测效果相对较差,容易出现漏检或误检的情况。

3.对密集目标的处理不佳:YOLOV8在处理密集目标时可能会出现重叠框的问题,导致检测结果不准确。

RT-detr和detr的区别

RT-DETR和DETR都是目标检测领域的模型,它们之间的区别主要在于实时性和度方面。

RTDETR是实时目标检测器Real-Time DETR)的简称,它是对DETR模型的改进,旨在提高目标检测的实时性能。RT-DE通过减少模型的计算量和优化网络结构,使得在保持较高准确的同时,能够在实时场景进行目标检测。相比于DETR,RT-DETR在速度上有了明显的提升

DETR是一种基于Transformer的端到端目标检测模型,它通过将目标检测任务转化为一个序列到序列的问题来解决。DETR不需要使用传统的锚框或者候选框,而是直接从输入图像中预测目标的位置和类别。这种端到端的设计使得DETR具有较好的准确性和可解释性。

RT-detr和yolo的比较

YOLO终结者?RT-DETR一探究竟!-CSDN博客

《DETRs Beat YOLOs on Real-time Object Detection》https://arxiv.org/abs/2304.08069

https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rtdetr

同级别下RT-DETR比所有的YOLO都更高,而且这还只是RT-DETR训练72个epoch的结果,先前精度最高的YOLOv8都是需要训500个epoch的,其他YOLO也基本都需要训300epoch,这个训练时间成本就不在一个级别了,对于训练资源有限的用户或项目是非常友好的。

DETR类在COCO上常用的尺度都是800x1333,以往都是以Res50 backbone刷上45 mAP甚至50 mAP为目标,而RT-DETR在采用了YOLO风格的640x640尺度情况下,也不需要熬时长训几百个epoch 就能轻松突破50mAP,精度也远高于所有DETR类模型。此外值得注意的是,RT-DETR只需要300个queries,设置更大比如像DINO的900个肯定还会更高,但是应该会变慢很多意义不大。

关于速度:

来看下RT-DETR和各大YOLO和DETR的速度对比:

(1)对比YOLO系列:

首先纯模型也就是去NMS后的速度上,RT-DETR由于轻巧的设计也已经快于大部分YOLO,然后实际端到端应用的时候还是得需要加上NMS的...嗯等等,DETR类检测器压根就不需要NMS,所以一旦端到端使用,RT-DETR依然轻装上阵一路狂奔,而YOLO系列就需要带上NMS负重前行了,NMS参数设置的不好比如为了拉高recall就会严重拖慢YOLO系列端到端的整体速度。

(2)对比DETR系列:

其实结论是显而易见的,以往DETR几乎都是遵循着800x1333尺度去训和测,这个速度肯定会比640尺度慢很多,即使换到640尺度训和测,精度首先肯定会更低的多,而其原生设计庞大的参数量计算量也注定了会慢于轻巧设计的RT-DETR。RT-DETR的轻巧快速是encoder高效设计、通道数、encoder数、query数等方面全方位改良过的。

目标检测方法分类的主要依据

①一阶段or二阶段;②有锚框or无锚框;③有nms or无nms;④CNN or Transformer;⑤;⑥

评价目标检测方法性能的主要指标

①精度;②速度;③模型大小;④资源消耗;⑤小目标检测能力;⑥密集目标检测能力;⑦泛化能力

目标检测算法的框架:

R-CNN 系列:如 R-CNN、Fast R-CNN、Faster R-CNN、Mask R-CNN 等。
YOLO 系列:如 YOLOv1、YOLOv2、YOLOv3、YOLOv4 等。
SSD 系列:如 SSD、DSSD、RetinaNet 等。
FCN 系列:如 FCN、SegNet、DeepLab 等。

目标检测的技术:

区域建议网络 (RPN):用于生成候选框的网络。
特征金字塔:用于处理不同尺度的特征。
注意力机制:用于提升模型对重要区域的关注。
多尺度检测:通过多个尺度的特征图来检测不同大小的目标。

YOLO(You Only Look Once)DETR(Detected Transformers)都是计算机视觉领域中的目标检测算法,它们各自有其独特的优点缺点YOLO(You Only Look Once): **优点:** 1. **速度较快**:YOLO由于其一次前向传播就完成检测,适合实时应用,如自动驾驶、视频监控等对速度有较高要求的场景。 2. **简单高效**:YOLO模型结构相对简单,预测速度非常快。 3. **输出直接**:YOLO的输出是直接定位分类,不需要额外的非极大值抑制步骤,减少了计算量。 **缺点:** 1. **精度与复杂度之间的权衡**:相比于其他精确度更高的方法(如R-CNN系列),YOLO在精度上可能略逊一筹,尤其是在较小的目标检测上。 2. **边界框问题**:对于小目标靠近的物体,边界框可能会有所重叠,影响准确度。 DETR(Detected Transformers): **优点:** 1. **基于Transformer**:DETR使用了Transformer架构,能够理解处理图像全局上下文信息,从而提升检测的精度。 2. **端到端学习**:DETR是一体化模型,不需要预定义的区域提议,直接从头开始学习,简化了整个检测流程。 3. **可解释性强**:由于没有复杂的后处理步骤,DETR的决策过程更容易理解解释。 **缺点:** 1. **计算资源消耗大**:Transformer的自注意力机制使得DETR的计算成本较高,不适合实时应用或资源有限的环境。 2. **训练时间长**:由于Transformer的训练迭代次数较多,且依赖于大规模标注数据进行训练,所以训练速度较慢。 3. **内存需求**:Transformer对内存的需求较大,可能导致内存溢出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值