7.4 平面及其方程

🙌作者简介:数学与计算机科学学院出身、在职高校高等数学专任教师,分享学习经验、生活、 努力成为像代码一样有逻辑的人!
🌙个人主页:阿芒的主页
⭐ 高等数学专栏介绍:本专栏系统地梳理高等数学这门课的知识点,参考书主要为经典的同济版第七版《高等数学》以及作者在高校使用的《高等数学》系统教材。梳理《高等数学》这门课,旨在帮助那些刚刚接触这门课的小白以及需要系统复习这门课的考研人士。希望自己的一些经验能够帮助更多的人。


空间几何图形是空间点在一定条件下的运动轨迹,而空间点的坐标是用一组有序数组 ( x , y , z ) (x,y,z) x,y,z)来表示的,那么点的运动轨迹就可以用点的坐标所满足的方程或方程组来表示.

在实际生活中,常见的平面是曲面的特殊情形,因此这一节先来讨论简单的情形:平面及其方程.

平面的点法式方程

  1. 平面的法线向量

1、定义:如果一非零向量垂直于一平面,则该向量叫做该平面的法线向量
2、特点:平面的法线向量垂直于平面内的任一向量

注:由于零向量的方向是任意的,所有规定零向量与任何向量都垂直.

  1. 平面的点法式方程

A ( x − x 0 ) + B ( y − y 0 ) + C ( z − z 0 ) = 0 A(x-x_{0})+B(y-y_{0})+C(z-z_{0})=0 A(xx0)+B(yy0)+C(zz0)=0称为平面的点法式方程

其中 n → \overrightarrow{n} n ={A,B,C}是平面的法向量, M 0 ( x 0 , y 0 , z 0 ) M_{0}(x_{0},y_{0},z_{0}) M0(x0,y0,z0)是平面上的已知点.



平面的一般方程

A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0          ~~~~~~~~         (1)
称为平面的一般式方程

其中 n → \overrightarrow{n} n ={A,B,C}是平面的法向量

  1. 平面方程的几种特殊情况

①当 D = 0 D=0 D=0时, A x + B y + C z = 0 Ax+By+Cz=0 Ax+By+Cz=0表示通过原点的平面;
②当 A = 0 A=0 A=0时, B y + C z + D = 0 By+Cz+D=0 By+Cz+D=0表示平行于 x x x轴的平面;
③当 B = 0 B=0 B=0时, A x + C z + D = 0 Ax+Cz+D=0 Ax+Cz+D=0表示平行于 y y y轴的平面;
④当 C = 0 C=0 C=0时, A x + B y + D = 0 Ax+By+D=0 Ax+By+D=0表示平行于 z z z轴的平面;
⑤当 A = B = 0 A=B=0 A=B=0时, C z + D = 0 Cz+D=0 Cz+D=0表示平行于 x o y xoy xoy面的平面;
⑥当 B = C = 0 B=C=0 B=C=0时, A x + D = 0 Ax+D=0 Ax+D=0表示平行于 y o z yoz yoz面的平面;
⑦当 A = C = 0 A=C=0 A=C=0时, B y + D = 0 By+D=0 By+D=0表示平行于 z o x zox zox面的平面.


平面的截距式方程

设平面与三坐标轴的交点分别为 P ( a , 0 , 0 ) P(a,0,0) P(a,0,0), Q ( 0 , b , 0 ) Q(0,b,0) Q(0,b,0), R ( 0 , 0 , c ) R(0,0,c) R(0,0,c)

x a + y b + z c = 1 ( a , b , c ≠ 0 ) \Large \frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1(a,b,c\neq0) ax+by+cz=1(a,b,c=0) 称为平面的截距式方程


点到平面的的距离

P 0 ( x 0 , y 0 , z 0 ) P_{0}(x_{0},y_{0},z_{0}) P0(x0,y0,z0)是平面 A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0外的一点,求 P 0 P_{0} P0到平面的距离.

             ~~~~~~~~~~~~              d = A x 0 + B y 0 + C z 0 + D A 2 + B 2 + C 2 \Large d=\frac{Ax_{0}+By_{0}+Cz_{0}+D}{\sqrt{A^{2}+B^{2}+C^{2}}} d=A2+B2+C2 Ax0+By0+Cz0+D


两平面的位置关系

  1. 定义

两平面法向量之间的夹角(通常取锐角或直角)称为两平面的夹角.

  1. 两平面的夹角
    设平面 Π 1 : A 1 x + B 1 y + C 1 z + D 1 = 0 Π_{1}:A_{1}x+B_{1}y+C_{1}z+D_{1}=0 Π1A1x+B1y+C1z+D1=0,平面 Π 2 : A 2 x + B 2 y + C 2 z + D 2 = 0 Π_{2}:A_{2}x+B_{2}y+C_{2}z+D_{2}=0 Π2A2x+B2y+C2z+D2=0.
    则平面 Π 1 Π_{1} Π1的法向量为 n → 1 \overrightarrow{n}_{1} n 1= { A 1 , B 1 , C 1 } \{A_{1},B_{1},C_{1}\} {A1,B1,C1},平面 Π 2 Π_{2} Π2的法向量为 n → 2 \overrightarrow{n}_{2} n 2= { A 2 , B 2 , C 2 } \{A_{2},B_{2},C_{2}\} {A2,B2,C2}.

c o s θ = ∣ n → 1 ⋅ n → 2 ∣ ∣ n → 1 ∣ ∣ n → 2 ∣ \Large cos\theta=\frac{|\overrightarrow{n}_{1}\cdot\overrightarrow{n}_{2}|}{|\overrightarrow{n}_{1}||\overrightarrow{n}_{2}|} cosθ=n 1∣∣n 2n 1n 2= ∣ A 1 A 2 + B 1 B 2 + C 1 C 2 ∣ A 1 2 + B 1 2 + C 1 2 A 2 2 + B 2 2 + C 2 2 \frac{|A_{1}A_{2}+B_{1}B_{2}+C_{1}C_{2}|}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}\sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}} A12+B12+C12 A22+B22+C22 A1A2+B1B2+C1C2

  1. 两平面的位置关系

Π 1 ⊥ Π 2 Π_{1}\botΠ_{2} Π1Π2 ⟺ \Longleftrightarrow n → 1 ⊥ n → 2 \overrightarrow{n}_{1}\bot\overrightarrow{n}_{2} n 1n 2 ⟺ \Longleftrightarrow A 1 A 2 + B 1 B 2 + C 1 C 2 = 0 A_{1}A_{2}+B_{1}B_{2}+C_{1}C_{2}=0 A1A2+B1B2+C1C2=0

Π 1 ∥ Π 2 Π_{1}\parallel Π_{2} Π1Π2 ⟺ \Longleftrightarrow n → 1 ∥ n → 2 \overrightarrow{n}_{1}\parallel\overrightarrow{n}_{2} n 1n 2 ⟺ \Longleftrightarrow A 1 A 2 + B 1 B 2 + C 1 C 2 \large\frac{A_{1}}{A_{2}}+\frac{B_{1}}{B_{2}}+\frac{C_{1}}{C_{2}} A2A1+B2B1+C2C1


  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
波动方程成像方法及其计算,张文生编写,目录好像少了一页,正文没有问题,关于波动方程成像方法。目录如下,请根据需要下载~~~(*^__^*) 目录编辑 前言 第1章 Kirchhoff偏移 1.1 偏移成像概述 1.2 Kirchhoff积分公 1.3 Kirchhoff偏移公 1.4 Green函数和Hankel函数 1.5 Kirchhoff偏移公的离散形 1.6 单程波形的Kirchhoff公 1.7 程函方程和输运方程 1.8 射线Kirchhoff公 1.9 散射Kirchhoff成像 第2章 零偏移距记录合成 2.1 伪谱法合成零偏移距记录 2.1.1 方法原理 2.1.2 数值计算 2.2 混合法合成零偏移距记录 2.2.1 理论方法 2.2.2 数值计算 2.3 三维正交各向异性介质有限差分正演模拟 2.3.1 各向异性方程及其差分方程的建立 2.3.2 三分量波场通量校正的实现 2.3.3 三维各向异性吸收边界条件 2.3.4 稳定性条件 2.3.5 数值计算 第3章 复杂构造叠后深度成像 3.1 逆时深度偏移 3.1.1 方法原理 3.1.2 稳定性条件 3.1.3 数值计算 3.2 四种常用的非Kirchhoff偏移方法 3.2.1 相移加插值(PSPI)法 3.2.2 隐(ω-x)域有限差分(FD)法 3.2.3 裂步傅里叶(SSF)法 3.2.4 傅里叶有限差分(FFD)法 3.2.5 数值计算 3.2.6 计算量概述 3.3 混合法深度偏移及其吸收边界条件 3.3.1 理论方法 3.3.2 吸收边界条件 3.3.3 数值计算 第4章 复杂构造叠前深度成像 4.1 炮集叠前深度偏移及其并行实现 4.1.1 理论方法 4.1.2 成像计算 4.2 双平方根算子叠前深度偏移 4.2.1 双平方根算子 4.2.2 双平方根算子波场外推 4.2.3 成像计算 4.3 裂步Hartley变换叠前深度偏移 4.3.1 理论方法 4.3.2 成像计算 4.4 相位编码叠前深度偏移 4.4.1 交叉成像的产生 4.4.2 相位编码的特性 4.4.3 成像计算 4.5 平面波波场合成叠前深度偏移及其并行实现 4.5.1 波场合成偏移方法 4.5.2 控制照明技术 4.5.3 成像计算 第5章 三维多方向分裂隐波场外推 5.1 交替方向隐格 5.1.1 旁轴近似 5.1.2 吸收边界条件 5.2 三维频率空间域多方向分裂 5.2.1 高阶近似与分裂方向数目的选择 5.2.2 近似系数的确定 5.2.3 二、三、四、六、八方向上的算子分裂 5.3 由Kirchhoff积分解导出偏移公 5.4 混合法四方向分裂偏移 5.4.1 混合法四方向分裂 5.4.2 分裂误差 5.4.3 螺旋线上的四方向波场外推 5.4.4 数值计算 第6章 正多边形网格上Laplace算子的差分表示 6.1 导数的中心差分算子表示 6.2 正多边形网格上的Laplace算子的差分表示 6.3 广义勾股定理 6.4 正方形和正六边形上的差分格 6.4.1 长算子 6.4.2 紧凑算子 6.4.3 在波场外推中的应用 第7章 三维频率空间域显波场外推 7.1 稳定的显外推格 7.2 McClellan滤波器 7.3 旋转的McClellan滤波器 7.3.1 45°旋转9点和17点滤波器 7.3.2 平均滤波器 7.4 六边形网格上的三维地震数据 7.4.1 一维采样理论 7.4.2 三维地震数据的带限表示 7.4.3 六边形网格上的数据采样 第8章 三维复杂构造叠前深度成像 8.1 全波波动方程的分解 8.2 混合法炮集三维叠前深度偏移 8.2.1 混合法波场外推 8.2.2 相对误差分析 8.2.3 成像计算与并行实现 8.3 混合法三维平面波合成叠前深度偏移 8.3.1 三维平面波合成与目标照明 8.3.2 因子分解波场外推 8.3.3 成像计算 8.4 共方位数据三维叠前偏移 8.4.1 共方位数据的下延拓 8.4.2 稳相路径的射线参数等价表示 8.4.3 共方位下延拓的精度 8.4.4 共方位Stolt偏移 参考文献 索引

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

是阿芒阿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值