寻找最新模型并转为TensorRT模型进行并行加速的方法

1.寻找最新开源的ONNX模型

https://github.com/PINTO0309/PINTO_model_zoo/tree/main
这个大佬把2023年新开源的模型都转成ONNX了,很好用。

2.安装ONNX2TensorRT

git clone --recurse-submodules https://github.com/onnx/onnx-tensorrt.git

# Build from source
cd onnx-tensorrt
mkdir build && cd build
cmake ..
make -j$(nproc)
sudo make install

(1).注意适配版本号

注意这里有个坑,git clone默认下载的是最新版的,onnx-tensorrt,有可能和你的tensorrt版本不合。
解决方法是,我的tensorrt版本为8.4,然后就在这个网址里找打onnx2trt的8.4 版本下载即可

https://github.com/onnx/onnx-tensorrt/releases

 dpkg -l | grep TensorRT

这个是查看TensorRT版本号的代码
一般出现这样的错误就是tensorrt版本不合

/home/zhangqi/Documents/Library/onnx-tensorrt/TensorOrWeights.hpp:115:38: error: ‘kUINT8’ is not a member of ‘nvinfer1::DataType’; did you mean ‘kINT8’?
  115 |             case nvinfer1::DataType::kUINT8: return "UINT8";
      |                                      ^~~~~~
      |                                      kINT8
/home/zhangqi/Documents/Library/onnx-tensorrt/TensorOrWeights.hpp:118:38: error: ‘kFP8’ is not a member of ‘nvinfer1::DataType’
  118 |             case nvinfer1::DataType::kFP8: return "FP8";
      |                                      ^~~~
In file included from /home/zhangqi/Documents/Library/onnx-tensorrt/trt_utils.hpp:8,
                 from /home/zhangqi/Documents/Library/onnx-tensorrt/onnx2trt_utils.hpp:10,
                 from /home/zhangqi/Documents/Library/onnx-tensorrt/onnx2trt_utils.cpp:5:
/home/zhangqi/Documents/Library/onnx-tensorrt/TensorOrWeights.hpp: In member function ‘std::string onnx2trt::TensorOrWeights::getType() const’:
/home/zhangqi/Documents/Library/onnx-tensorrt/TensorOrWeights.hpp:115:38: error: ‘kUINT8’ is not a member of ‘nvinfer1::DataType’; did you mean ‘kINT8’?
  115 |             case nvinfer1::DataType::kUINT8: return "UINT8";

(2).注意适配合适的cuda

fatal error: crt/host_defines.h: No such file or directory
  147 | #include "crt/host_defines.h"
      |          ^~~~~~~~~~~~~~~~~~~~

出现这种状况,就直接搜索全计算机有没有这个文件,我的这个文件在cuda11.1文件夹里而不是默认的cuda文件夹。于是我把onnx2trt里面CmakeList里的

if (NOT CUDA_TOOLKIT_ROOT_DIR)
  set(CUDA_TOOLKIT_ROOT_DIR /usr/local/cuda)

改为

if (NOT CUDA_TOOLKIT_ROOT_DIR)
  set(CUDA_TOOLKIT_ROOT_DIR /usr/local/cuda-11.1)

3.转换开始!!!

cd build
/onnx2trt ../decoder.onnx -o decoder.trt
<think>好的,我现在需要回答用户关于端到端大模型的架构、实现、训练和推理的问题。首先,我得明确端到端模型的基本概念。端到端模型指的是从输入到输出直接映射的模型,无需中间的人工设计模块,这通常通过深度神经网络实现。接下来,用户提到的架构、实现、训练和推理四个方面需要逐一分析。 在架构方面,端到端大模型通常基于Transformer结构,比如BERT、GPT等。这些模型使用自注意力机制处理序列数据,能够捕捉长距离依赖。可能需要提到模型的不同组成部分,如编码器、解码器,或者仅编码器/解码器的结构差异。同时,模型的大规模体现在参数数量和数据量上,比如百亿甚至千亿参数,需要分布式训练技术。 实现部分需要考虑具体的框架,比如TensorFlow、PyTorch,以及并行策略,如数据并行模型并行、流水线并行。这里需要结合引用中的内容,比如引用[2]提到的FasterTransformer、TensorRT-LLM等工具,这些可以用于优化推理效率。此外,代码示例可能需要展示模型定义的部分,但用户提供的引用中有代码示例的提及,但具体代码可能需要参考实际框架的使用方法。 训练方面,大规模数据集的预处理、分布式训练策略、优化器的选择(如AdamW)、混合精度训练和梯度累积是关键点。还要考虑如何解决训练中的挑战,比如内存限制和计算资源分配。引用[2]提到模型压缩和协同优化,这里可能在训练后的阶段应用,但训练过程中也需要考虑效率问题。 推理部分需要讨论如何将训练好的模型部署到生产环境,包括模型压缩技术(如量化、剪枝、知识蒸馏)、推理引擎的使用(如TensorRT)、服务部署优化(批处理、动态扩展)。引用[2]中提到的百度文心一言和腾讯混元大模型的案例,说明产业界的实际应用和优化效果。 同时,用户提供的引用[1]强调模型的鲁棒性和可解释性,这部分在架构设计时可能需要考虑,比如引入可解释性模块或鲁棒性训练技巧。但用户的问题主要集中在架构、实现、训练和推理,所以可能需要将这些点融入各部分中,例如在架构中提及可解释性设计,或在训练中讨论增强鲁棒性的方法。 最后,生成相关问题需要考虑用户可能想进一步了解的方面,比如具体架构细节、训练中的挑战、推理优化的技术比较,或者应用案例。需要确保问题覆盖用户可能感兴趣的后续方向。 现在需要组织这些思路,用中文清晰、分步骤地呈现,同时遵循系统级指令中的格式要求,特别是数学公式和代码块的正确使用,以及引用标注。确保每个部分结构清晰,引用自然融入内容末尾。</think>### 端到端大模型的架构、实现、训练与推理 #### 1. 架构设计 端到端大模型的核心架构通常基于**Transformer**结构,例如GPT系列和BERT模型[^2]。其核心组件包括: - **自注意力机制**:捕捉长距离依赖关系,公式为: $$ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ - **多层堆叠**:通过多个Transformer层逐步提取抽象特征。 - **参数规模**:模型参数量可达千亿级别,例如GPT-3包含1750亿参数。 #### 2. 实现方法 实现端到端大模型需结合**分布式训练框架**与**硬件加速**: ```python # 示例:PyTorch分布式训练初始化 import torch.distributed as dist dist.init_process_group(backend='nccl') ``` - **并行策略**: - 数据并行:拆分数据到多GPU。 - 模型并行:拆分模型层到不同设备。 - 流水线并行:将模型按层分段处理。 - **工具支持**:使用HuggingFace Transformers、DeepSpeed等库简化实现。 #### 3. 训练流程 训练大模型需解决**内存效率**与**计算效率**问题: 1. **数据预处理**:构建高质量语料库,进行分词(如BPE算法)。 2. **优化策略**: - 混合精度训练(FP16/FP32混合)。 - 梯度检查点(减少显存占用)。 - 使用ZeRO优化器(如DeepSpeed框架)。 3. **超参数设置**:学习率预热、大批次训练(batch size>1万)。 #### 4. 推理优化 推理阶段需平衡**速度**与**资源消耗**: - **模型压缩技术**: - 量化:将FP32权重转为INT8,公式:$W_{quant} = \text{round}(W/\Delta)$ - 知识蒸馏:用小模型拟合大模型输出。 - **部署工具**: - 使用TensorRT-LLM或vLLM进行内核优化。 - 动态批处理(Dynamic Batching)提升吞吐量。 #### 5. 关键挑战与解决方案 - **可解释性**:通过注意力可视化分析决策依据[^1]。 - **鲁棒性**:对抗训练增强模型抗干扰能力。 - **成本控制**:采用模型切片服务(MoE架构)降低单节点负载。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值