车辆路径问题——day20 读论文:基于模糊需求与模糊时间窗的车辆路径问题及混合遗传算法求解(2019 系统管理学报)

本文提出一种基于模糊需求与时间窗的车辆路径问题(VRP)多目标优化模型及混合遗传算法,通过引入擂台法则构造Pareto非支配解集解决多目标冲突,在不同客户规模下验证算法有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于模糊需求与模糊时间窗的车辆路径问题及混合遗传算法求解(2019 系统管理学报)

资源下载

点击跳转

基于模糊需求与模糊时间窗的车辆路径问题及混合遗传算法求解(2019 系统管理学报)

chap1 模型建立

多目标模糊机会约束模型

式( 5) 是最小化的预计行驶距离和额外行驶距离之和,即最小化总行驶距离;式( 6) 是最大化平均客户满意度;式( 7)最小化车辆使用数; 式( 8) 表示车辆当前载重量不大于车辆最大载重量的可信性 c不小于主观参数值 c*,式( 9) 表示最低服务水平约束,以保证每个客户的服务满意度不低于最低值等等

chap3 算例验证与分析

VRPTW

25 个客户规模的 6 类问题的求解结果,总路程的平均误差为 0. 27%,在合理的接受范围内;

50 个客户规模的平均误差为 0. 51%;
100 个客户规模的平均误差为 0. 82%;
可见本算法所得的解与国际公认的最优解偏差较小

VRPFTW

本文的优化结果与文献[10]相比,虽然车辆数节省效果稍差,但总行驶距离或客户满意度优于文献

VRPFDFTW

最低客户满意度限定下,VRPFDFTW的调度方法在总行驶距离以及车辆使用数方面都得到了降低,在维持较高客户满意度水平下接近目前最优解

结论:本文算法是求解VRPFD、VRPFTW 和 VRPFDFTW 的有效算法

chap2 混合遗传算法

本文结合遗传算法与局部搜索算法的优势,引入擂台法则( Arena’s Principle,AP) 构造 Pareto 非支配集,解决多目标优化问题中各目标间的矛盾设计混合遗传算法对建立的模型进行求解

算法步骤

1)设定编码方案及各参数
2)生成初始种群,并计算各目标函数
3)擂台法则构造非支配解F
4)遗传操,产生子代种群
5)组合F与子代种群,采用AP法则构造新的非支配解集F
6)局部优化
7)适应值计算,锦标赛选择
8)记录当代非支配解集F
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值