基于模糊需求与模糊时间窗的车辆路径问题及混合遗传算法求解(2019 系统管理学报)
资源下载
基于模糊需求与模糊时间窗的车辆路径问题及混合遗传算法求解(2019 系统管理学报)
chap1 模型建立
多目标模糊机会约束模型
式( 5) 是最小化的预计行驶距离和额外行驶距离之和,即最小化总行驶距离;式( 6) 是最大化平均客户满意度;式( 7)最小化车辆使用数; 式( 8) 表示车辆当前载重量不大于车辆最大载重量的可信性 c不小于主观参数值 c*,式( 9) 表示最低服务水平约束,以保证每个客户的服务满意度不低于最低值等等
chap3 算例验证与分析
VRPTW
25 个客户规模的 6 类问题的求解结果,总路程的平均误差为 0. 27%,在合理的接受范围内;
50 个客户规模的平均误差为 0. 51%;
100 个客户规模的平均误差为 0. 82%;
可见本算法所得的解与国际公认的最优解偏差较小