1. 奇点 (Singularity)
奇点是复变函数在某一点附近无法解析的点。具体来说,假设函数 f ( z ) f(z) f(z) 在某点 z 0 z_0 z0 的邻域内不是解析的,那么 z 0 z_0 z0 就是一个奇点。
奇点可以根据函数在该点附近的行为进一步分类为:
-
可去奇点 (Removable Singularity): 如果函数 f ( z ) f(z) f(z) 在点 z 0 z_0 z0 附近的极限存在,且可以通过适当定义 f ( z 0 ) f(z_0) f(z0) 使得 f ( z ) f(z) f(z) 在该点解析,则该点是一个可去奇点。
例如, f ( z ) = sin ( z ) z f(z) = \frac{\sin(z)}{z} f(z)=zsin(z) 在 z = 0 z = 0 z=0 处有可去奇点,因为
lim z → 0 sin ( z ) z = 1 , \lim_{z \to 0} \frac{\sin(z)}{z} = 1, z→0limzsin(z)=1,
可以定义 f ( 0 ) = 1 f(0) = 1 f(0)=1 使得函数在该点解析。 -
本性奇点 (Essential Singularity): 如果函数在该点附近没有极限,且无法通过任何方式使函数在该点解析,则该点是本性奇点。对于本性奇点,函数的行为可能非常复杂,表现为无穷多的震荡或振荡。
例如, f ( z ) = e 1 / z f(z) = e^{1/z} f(z)=e1/z 在 z = 0 z = 0 z=0 处有本性奇点。
2. 极点 (Pole)
极点是复变函数的一种特殊类型的奇点。假设函数
f
(
z
)
f(z)
f(z) 在点
z
0
z_0
z0 处有极点,当
z
→
z
0
z \to z_0
z→z0 时,
f
(
z
)
f(z)
f(z) 的模数趋向无穷大。具体来说,点
z
0
z_0
z0 是一个极点,当且仅当
f
(
z
)
f(z)
f(z) 在
z
0
z_0
z0 附近可以表示为:
f
(
z
)
=
g
(
z
)
(
z
−
z
0
)
n
,
f(z) = \frac{g(z)}{(z - z_0)^n},
f(z)=(z−z0)ng(z),
其中
g
(
z
)
g(z)
g(z) 在
z
0
z_0
z0 处是解析的,且
g
(
z
0
)
≠
0
g(z_0) \neq 0
g(z0)=0,
n
n
n 是一个正整数。这个表达式表示
f
(
z
)
f(z)
f(z) 在
z
0
z_0
z0 处有一个阶为
n
n
n 的极点。
- 如果 n = 1 n = 1 n=1,我们称 z 0 z_0 z0 为 简单极点。
- 如果 n = 2 n = 2 n=2,我们称 z 0 z_0 z0 为 二阶极点,以此类推。
例如,
f
(
z
)
=
1
z
f(z) = \frac{1}{z}
f(z)=z1