读书笔记-深度学习入门之pytorch-第六章(含循环实现手写数字识别)

31、生成模型

一系列用于随机生成课观测数据的模型

两个主要功能:学习一个概率分布、生成数据

(1)自动编码器

最开始作为一种数据的压缩算法

特点:1>与数据的相关程度高,只能压缩与训练数据相似的数据

            2>压缩后数据有损,数据降维导致的

应用:1>数据去噪

                2>可视化降维

3>生成数据

2、手写数字生成

(1)全连接方法

from google.colab import drive
drive.mount('/content/drive')

import torch
import torch.nn as nn
from torch.autograd import Variable
import matplotlib.pyplot as plt
%matplotlib inline

cudAvl = lambda x : x.cuda() if torch.cuda.is_available() else x

class autoencoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Linear(28*28, 128),
            nn.ReLU(True),
            nn.Linear(128, 64),
            nn.ReLU(True),
            nn.Linear(64, 12),
            nn.ReLU(True),
            nn.Linear(12, 3)
        )
        
        self.decoder = nn.Sequential(
            nn.Linear(3, 12),
            nn.ReLU(True),
            nn.Linear(12, 64),
            nn.ReLU(True),
            nn.Linear(64, 128),
            nn.ReLU(True),
            nn.Linear(128, 28*28),
            nn.Tanh()
        )
    
    def forward(self, x):
        code = self.encoder(x)
        imgTensor = self.decoder(code)
        return code, imgTensor
    
    def encode(self, x):
        return self.encoder(x)
    
    def decode(self, x):
        return self.decoder(x)

net = autoencoder()
net = cudAvl(net)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(net.parameters(), lr=1e-3)

import csv

with open('/content/drive/MyDrive/Colab Notebooks/train.csv') as f :
    lines = csv.reader(f)
    label, attr = [], []
    for line in lines :
        if lines.line_num == 1 :
            continue
        label.append(int(line[0]))
        attr.append([float(j) for j in line[1:]])
print(len(label), len(attr[1]))


digTensor = torch.FloatTensor(attr)
digTensor = digTensor / 255.0
digTensor.shape


epoch = 1500
pltX, pltY = [], []
for e in range(epoch):
    pltX.append(e)
    Input = cudAvl(Variable(digTensor))
    Target = cudAvl(Variable(digTensor))
    _, Output = net(Input)
    loss = criterion(Output,Target)
    print_loss = loss.item()
    pltY.append(print_loss)
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    if (e + 1) % 100 == 0:
        print('epoch [%s/%s]: %s' %(e + 1, epoch, print_loss))

plt.title('loss function output curve')
plt.plot(pltX, pltY)
plt.show()


from PIL import  Image
import numpy as np

def getImage(matrix):
    dig = np.array(matrix.numpy()).reshape((28, 28))
    digImg = Image.fromarray(dig * 255)
    digImg = digImg.convert('L')
    return digImg

def compare(matrix, testNet):
    before = getImage(matrix)
    plt.subplot(121)
    plt.title('before encoding')
    plt.imshow(before)
    
    matrix = matrix.unsqueeze(0)
    In = cudAvl(Variable(matrix))
    code, Out = testNet(In)
    if torch.cuda.is_available():
        Out = Out.cpu()
    after = getImage(Out.data)
    
    plt.subplot(122)
    plt.title('after encoding')
    plt.imshow(after)


import random
index = random.randint(0, digTensor.shape[0])
print('image index =', index, ', number = ', label[index], '\n')

net.eval()
compare(digTensor[index], net)


 (2)卷积神经网络方法

class CNNautoencoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(
            nn.Conv2d(1, 16, 3, stride=3, padding=1),
            nn.ReLU(True),
            nn.MaxPool2d(2, stride=2),
            nn.Conv2d(16, 8, 3, stride=2, padding=1),
            nn.ReLU(True),
            nn.MaxPool2d(2, stride=1)
        )
        
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(8, 16, 3, stride=2),
            nn.ReLU(True),
            nn.ConvTranspose2d(16, 8, 5, stride=3, padding=1),
            nn.ReLU(True),
            nn.ConvTranspose2d(8, 1, 2, stride=2, padding=1),
            nn.Tanh()
        )
    
    def forward(self, x):
        code = self.encoder(x)
        transImg = self.decoder(code)
        return code, transImg


CNNnet = CNNautoencoder()
CNNnet = cudAvl(CNNnet)
CNNcriterion = nn.MSELoss()
CNNoptimizer = torch.optim.Adam(CNNnet.parameters(), lr=1e-3, weight_decay=1e-5)

CNNdigTensor = digTensor.view(digTensor.shape[0], 1, 28, 28)

epoch = 1000
pltX, pltY = [], []
for e in range(epoch):
    pltX.append(e)
    Input = cudAvl(Variable(CNNdigTensor))
    Target = cudAvl(Variable(CNNdigTensor))
    _, Output = CNNnet(Input)
    loss = CNNcriterion(Output,Target)
    print_loss = loss.item()
    pltY.append(print_loss)
    CNNoptimizer.zero_grad()
    loss.backward()
    CNNoptimizer.step()
    if (e + 1) % 100 == 0:
        print('epoch [%s/%s]: %s' %(e + 1, epoch, print_loss))

plt.title('loss function output curve')
plt.plot(pltX, pltY)
plt.show()


CNNnet.eval()
compare(CNNdigTensor[index], CNNnet)

3、变分自动编码器

自动编码器中需要输入一张照片以解码出生成照片,失去了随机性

变分自动编码器原理:在编码过程中增加限制,使得它生成的隐含向量能够遵循标准正态分布,在生成照片时,仅输入一个标准正态分布则可以生成照片

模型准确率:解码器生成的图片与原图片的相似程度

实际中在模型准确率与隐含向量服从的标准正态分布中做权衡

隐含向量与标准正态分布之间的差异:KL divergence

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值