本地LLM部署探索——Jan 初探秘

本地LLM部署探索——Jan 初探秘

随着本地部署 LLM 工具的快速发展,Jan 凭借其独特的功能与理念,成为一个备受瞩目的开源项目。

测试版本:0.5.11


一、Jan 的核心理念

  1. 本地优先(Local-first):
    所有操作在本地完成,避免数据泄露,确保隐私安全。

  2. 用户掌控(User-owned):
    数据以通用格式存储,无锁定限制,用户可自由迁移。

  3. 完全可定制(Fully Customizable):
    支持通过第三方扩展调整对齐、内容审查等个性化配置。

  • 定位: “Jan is an open source ChatGPT-alternative that runs 100% offline.”

  • 功能: 支持加载 Hugging Face 模型、API 扩展和本地数据处理。

参考资源: GitHub:Jan 官方页面 | 官网:Jan.ai | 文档:Jan 官方文档


二、安装与初体验

![[Pasted image 20241226104654.png]]

安装步骤:
  1. 下载适配平台的安装包(支持 Windows/macOS/Linux)。

  2. 启动后进入清晰简洁的操作界面,包括对话窗口、模型管理、API 扩展等模块。

  3. 如果要使用GPU加速,确保已经安装NVIDIA的CUDA Toolkit。(可选)

初体验1:本地运行模型进行对话
  1. 在左侧菜单栏选择HUB后,看到搜索框和导入模型按钮。

  2. 支持直接搜索模型名称然后下载到本地运行,还会提示模型是否匹配本地设备,避免负载过大或运行不了等情况。

  3. 支持通过 Hugging Face URL 快速打开模型仓库页面进行选择下载。

  4. 支持选择本地已有文件导入,无需复制或移动模型文件。可以快速体验其他 LLM 工具下载的模型,减少存储需求。
    ![[Pasted image 20241226175701.png]]

  5. 选择模型进行对话,右侧可以进行更多的设置。
    ![[Pasted image 20241226174520.png]]

初体验2:在线API服务

![[Pasted image 20241226172409.png]]

![[Pasted image 20241226110805.png]]

![[Pasted image 20241226111537.png]]

  1. 先在设置里面的预设扩展选择OpenAI,然后设置对应的API Key和地址。

  2. 在对话右侧选择对应模型,然后即可进行对话,文本对话。

初体验3:本地API服务

![[Pasted image 20241226174835.png]]

  1. 选择左侧本地服务图标进行启动服务,默认地址端口为:127.0.0.1:1337。

  2. 可以在其他地方进行调用。


三、Jan 的实用功能

  1. 模型获取的便捷性

    • 内置模型管理器,可直接从 Hugging Face Hub 下载。
    • 支持通过 Hugging Face URL 快速导入模型文件。
  2. 灵活的模型导入方式

    • 支持软链接导入,无需复制或移动模型文件。
    • 快速体验其他 LLM 工具下载的模型,减少存储需求。
  3. 即用的顶级 API 扩展

    • 预装多个顶级 API(如 OpenAI GPT 和 Claude)。
    • 用户只需输入密钥即可快速访问,集成简单高效。

四、Jan 的优势与不足

优势:

  • 隐私保障: 完全离线运行,适合敏感数据处理。
  • 多功能整合: 模型管理与外部 API 扩展一体化,方便高效。
  • 完全免费: 开源许可,无需额外费用。

不足:

  • 中文支持有限: 界面不支持中文,需额外配置。
  • 硬件要求较高: 对 GPU 性能要求较高,普通设备可能运行受限。

五、Jan 的实际应用场景

  1. 文档助手:
    本地运行问答模型,解析用户上传文档,生成精确回复。

  2. 隐私聊天:
    本地处理,避免聊天记录泄露到云端,适合企业和个人用户。

  3. 研发实验:
    结合扩展功能,支持自定义微调和本地实验,便于开发者研究。


六、总结

Jan 是一款值得探索的本地 LLM 部署工具,凭借离线安全、模型自由切换和强大扩展能力,为初学者和开发者提供了可靠的解决方案。未来的改进方向包括增强中文支持和优化硬件兼容性,进一步降低使用门槛。

### 如何在本地环境中部署 LangChain 的大规模语言模型LLM) #### 准备工作 为了成功地在本地环境部署 LangChain 的 LLM 模型,需先确认已具备必要的软件和硬件条件。这通常意味着拥有一定配置的计算机设备和支持 Python 编程语言的工作站。 #### 安装依赖库 首先应当设置好 Python 虚拟环境并安装所需的 Python 库文件。对于 LangChain-Chatchat 这样的项目,在 23 年 9 月份进行了更新升级[^2],因此建议从官方仓库获取最新的安装说明文档来进行操作。 ```bash pip install langchain ``` #### 获取预训练模型 由于直接从零开始训练一个大型语言模型成本极高,所以一般会采用已经预先训练好的模型作为基础。这些预训练模型可以通过多种渠道获得,比如 Hugging Face 或者其他开放平台。 #### 配置 API 访问权限 如果所使用的 LLM 是通过云服务提供商提供的,则还需要申请相应的 API Key 来实现远程调用功能。不过如果是打算完全离线使用的话,则不需要此步骤。 #### 构建应用接口 根据实际应用场景的不同,可以选择不同的方式进行集成开发。例如可以创建 RESTful Web Service 接口供前端页面或其他应用程序调用;也可以封装成命令行工具用于批处理任务等。 #### 测试与优化 最后一步就是进行全面的功能测试以确保一切正常运作,并针对特定业务场景做进一步调整优化。考虑到企业内部私有化部署的需求,应该考虑如何让最终用户更方便快捷地接入到这个系统当中去[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JerryGW

赠人玫瑰,手留余香

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值