量化敏感层分析Quantization-Aware-Training(QAT)

Quantization-Aware-Training(QAT)

量化感知训练 (QAT) 是一种用于深度学习的技术,用于训练可以量化的模型,以便部署在计算能力有限的硬件上。QAT 在训练过程中模拟量化,让模型在不损失精度的情况下适应更低的位宽。与量化预训练模型的训练后量化 (PTQ) 不同,QAT 涉及在训练过程本身中量化模型。

QAT过程可以分解为以下步骤:

定义模型:定义一个浮点模型,就像常规模型一样。

定义量化模型:定义一个与原始模型结构相同但增加了量化操作(如torch.quantization.QuantStub())和反量化操作(如torch.quantization.DeQuantStub())的量化模型。

准备数据:准备训练数据并将其量化为适当的位宽。

训练模型:在训练过程中,使用量化模型进行正向和反向传递,并在每个 epoch 或 batch 结束时使用反量化操作计算精度损失。

重新量化:在训练过程中,使用反量化操作重新量化模型参数,并使用新的量化参数继续训练。

Fine-tuning:训练结束后,使用fine-tuning技术进一步提高模型的准确率。

在PyTorch中,可以使用 torch.quantization.quantize_dynamic() 方法来执行 QAT。这是一个基本的 QAT 示例:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.datasets as datasets
import torchvision.transforms as transforms
from torch.quantization import QuantStub, DeQuantStub, \
    quantize_dynamic, prepare_qat, convert

# Define the model
class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.quant = QuantStub()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.fc = nn.Linear(128, 10)
        self.dequant = DeQuantStub()

    def forward(self, x):
        x = self.quant(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        x = self.relu(x)
        x = self.avgpool(x)
        x = x.view(x.size(0), -1)
        x = self.fc(x)
        x = self.dequant(x)
        return x

# Prepare the data
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])
train_data = datasets.CIFAR10(root='./data', train=True, download=True,
                              transform=transform)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=64,
                                           shuffle=True, num_workers=4)

# Define the model and optimizer
model = MyModel()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

# Prepare the model
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
model = prepare_qat(model)

# Train the model
model.train()
for epoch in range(10):
    for i, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = nn.CrossEntropyLoss()(output, target)
        loss.backward()
        optimizer.step()
        if i % 100 == 0:
            print('Epoch: [%d/%d], Step: [%d/%d], Loss: %.4f' %
                  (epoch+1, 10, i+1, len(train_loader), loss.item()))

    # Re-quantize the model
    model = quantize_dynamic(model, {
        '': torch.quantization.default_dynamic_qconfig
    }, dtype=torch.qint8)

# Fine-tuning
model.eval()
for data, target in train_loader:
    model(data)
model = convert(model, inplace=True)

在这个例子中,我们在CIFAR10 数据集上训练一个简单的卷积神经网络,并执行 QAT 以获得更好的量化模型。我们首先定义一个MyModel类来定义模型,然后准备训练数据。我们使用 torch.quantization.get_default_qat_qconfig() 方法获取默认的 QAT 配置,使用 prepare_qat() 方法准备

量化参数。训练后,我们使用 convert() 方法将模型转换为量化模型。

总的来说,QAT是一种非常有用的技术,可以帮助我们训练更好的量化模型。与PTQ不同,QAT 可以在训练过程中自适应地调整模型的参数和量化参数,以提高模型的准确性和性能。在PyTorch中,可以使用 torch.quantization.quantize_dynamic() 方法来执行 QAT。
如果PTQ中模型训练和量化是分开的,而QAT则是在模型训练时加入了伪量化节点,用于模拟模型量化时引起的误差。

QAT处理流程如下:

  1. 首先在数据集上以FP32精度进行模型训练,得到训练好的baseline模型;

  2. 在baseline模型中插入伪量化节点,

  3. 进行PTQ得到PTQ后的模型;

  4. 进行量化感知训练;

  5. 导出ONNX 模型。

QAT后的提升

在这里插入图片描述
在这里插入图片描述

file "e:\projects\snn\snnver0.1\quantization\yolov8-qat-master\utils\dataset" 是一个文件路径,指向一个名为 "dataset" 的模块或者文件夹。该路径位于 "yolov8-qat-master" 文件夹下的 "quantization" 文件夹中的 "utils" 文件夹里。这个文件或者文件夹可能与数据集的处理或者管理有关。 根据路径的结构,可以看出该文件或者文件夹与使用 YOLOv8 进行量化训练(Quantization-Aware Training)的项目相关。YOLOv8 是一种目标检测算法,通过将神经网络量化为较低精度的表示,从而减少存储和计算需求,提高在资源受限环境下的实时性能。在这个项目中,"dataset" 可能是用于加载和处理训练数据的工具集。 在这个文件或者文件夹中,可能包含以下功能: 1. 数据集加载:用于从特定的数据集中加载图像、标签或其他相关信息的模块或函数。 2. 数据预处理:对加载的数据进行预处理,例如调整图像的大小、裁剪图像、增强数据等。 3. 数据增强:在训练阶段对数据进行增强,以增加数据的多样性和泛化能力。 4. 数据集划分:将数据集划分为训练集、验证集和测试集的工具函数。 5. 数据集统计:对数据集进行统计分析,例如计算类别分布、图像数量等。 6. 其他与数据集相关的功能或工具。 总之,"file "e:\projects\snn\snnver0.1\quantization\yolov8-qat-master\utils\dataset"" 指向的文件或者文件夹与 YOLOv8 的量化训练项目中数据集的处理和管理有关。具体包含了哪些功能,需要深入查看该路径下的文件和代码。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值