HDR(高动态范围成像)

定义

High Dynamic Range Imaging:高动态范围成像

作用

正确地表示真实世界中从太阳光直射到最暗地阴影这样大的范围亮度

在这里插入图片描述

原理

为什么需要HDR

一般的显示器只能显示8位色,从0到255共256个等级,但在日常中,光照强度远远超过这个范围

HDR就是用来将大范围的光照非线性地映射到显示器能显示的范围内

步骤

  1. 将整个场景渲染到一张浮点纹理上
  2. 利用Tone Mapping(色调映射),把HDR的浮点纹理映射到LDR(低动态范围)上
  3. 渲染Bloom效果
  4. 将Bloom和Tone Mapping结果叠加

效果对比图

正常

请添加图片描述

HDR

HDR

可以看到HDR的明暗过渡更好,亮的地方就没那么亮

### 高动态范围成像HDR)相较于低动态范围成像(LDR)的优势 高动态范围成像HDR)能够更精确地捕捉和呈现现实世界中的光线强度差异,这使得其相比于低动态范围成像(LDR)具有显著的技术优势。以下是具体分析: #### 更宽的亮度范围 HDR技术的核心在于扩展图像的亮度范围,使其能够更好地反映真实世界的光照条件[^4]。这意味着,在同一幅图像中,HDR可以同时保留亮部细节(如太阳直射区域)以及暗部细节(如阴影下的物体),而不会出现过曝或欠曝的现象。 #### 减少伪影现象 当使用多张不同曝光时间的照片合成为一幅HDR图像时,如果源图片未经过适当对齐,则可能导致严重的人工痕迹——即所谓的“鬼影”。然而只要确保输入素材已正确校准并匹配好位置关系之后再进行处理操作就不会存在此类问题了[^2]。相比之下,LDR由于受到单一固定曝光设置限制,往往难以避免某些局部区域因过度曝光或者不足而导致的信息丢失. #### 提升视觉体验质量 通过应用色调映射(Tone Mapping),可以把原本超出标准RGB色彩空间所能表达的大范围光强变化压缩进适合屏幕设备再现的形式里去展现给观众看得到更加细腻逼真的画面效果[^1]. 这样一来不仅让整体观感更为舒适自然而且还能突出主体物象特征增强艺术表现力. ```python import cv2 import numpy as np def create_HDR_image(exposures): """ 使用OpenCV创建HDR图像。 参数: exposures (list): 不同曝光级别的图像列表 返回: hdr_img: 合成后的HDR图像 """ merge_mertens = cv2.createMergeMertens() hdr_img = merge_mertens.process(exposures) return hdr_img ``` 上述代码展示了如何利用 OpenCV 库函数 `createMergeMertens()` 来生成 HDR 图像的一个简单示例[^3]. ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值