集成学习(stacting)

stacting

将训练好的所有基模型对整个训练集进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测

在这里插入图片描述
Stacking简单理解就是讲几个简单的模型,一般采用将它们进行K折交叉验证输出预测结果,然后将每个模型输出的预测结果合并为新的特征,并使用新的模型加以训练


安装Stacting所需要的库

pip install mlxtend

代码实现
from sklearn import datasets  
from sklearn import model_selection  # 交叉验证
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier  
from sklearn.tree import DecisionTreeClassifier
from mlxtend.classifier import StackingClassifier # pip install mlxtend
import numpy as np  

# 载入数据集
iris = datasets.load_iris()  
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target  

# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)  
clf2 = DecisionTreeClassifier() 
clf3 = LogisticRegression()  
 
# 定义一个次级分类器
lr = LogisticRegression()  
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],   
                          meta_classifier=lr)
  
for clf,label in zip([clf1, clf2, clf3, sclf],
                      ['KNN','Decision Tree','LogisticRegression','StackingClassifier']):  
    # cv=3表示三折交叉验证
    scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')  
    print("Accuracy: %0.2f [%s]" % (scores.mean(), label)) 

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

!一直往南方开.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值