stacting
将训练好的所有基模型对整个训练集进行预测,第j个基模型对第i个训练样本的预测值将作为新的训练集中第i个样本的第j个特征值,最后基于新的训练集进行训练。同理,预测的过程也要先经过所有基模型的预测形成新的测试集,最后再对测试集进行预测
Stacking简单理解就是讲几个简单的模型,一般采用将它们进行K折交叉验证输出预测结果,然后将每个模型输出的预测结果合并为新的特征,并使用新的模型加以训练
安装Stacting所需要的库
pip install mlxtend
代码实现
from sklearn import datasets
from sklearn import model_selection # 交叉验证
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from mlxtend.classifier import StackingClassifier # pip install mlxtend
import numpy as np
# 载入数据集
iris = datasets.load_iris()
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target
# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = DecisionTreeClassifier()
clf3 = LogisticRegression()
# 定义一个次级分类器
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],
meta_classifier=lr)
for clf,label in zip([clf1, clf2, clf3, sclf],
['KNN','Decision Tree','LogisticRegression','StackingClassifier']):
# cv=3表示三折交叉验证
scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')
print("Accuracy: %0.2f [%s]" % (scores.mean(), label))