【机器学习】高斯混合模型(Gaussian Mixture Models, GMM)深度解析


鑫宝Code

🌈个人主页: 鑫宝Code
🔥热门专栏: 闲话杂谈炫酷HTML | JavaScript基础
💫个人格言: "如无必要,勿增实体"


高斯混合模型(Gaussian Mixture Models, GMM)深度解析

在这里插入图片描述

引言

在机器学习与统计学领域,高斯混合模型(GMMs)是一种强大的非监督学习工具,广泛应用于数据聚类、密度估计及隐含变量建模。GMM通过结合多个高斯分布(正态分布),为数据点的分布提供了一种灵活且适应性强的描述方式。本文将系统地介绍GMM的基本概念、数学原理、算法流程、参数估计方法、优缺点以及实际应用场景,旨在为读者提供一个全面而深入的理解。

1. GMM基础

1.1 概念介绍

高斯混合模型是一种概率模型,它假设数据是由K个不同的高斯分布(也称作组件)混合而成。每个高斯分布代表数据的一个潜在类别或簇,而数据点属于某个类别的概率决定了它由哪个高斯分布产生。

1.2 模型表示

设有一个观测数据集X = {x_1, x_2, ..., x_n},每个数据点x_i是D维的。GMM模型可以用以下形式表示:

p ( x ∣ θ ) = ∑ k = 1 K π k N ( x ∣ μ k , Σ k ) p(x|\theta) = \sum_{k=1}^{K}\pi_k \mathcal{N}(x|\mu_k, \Sigma_k) p(xθ)=k=1KπkN(xμk,Σk)

其中, p i k pi_k pik是第k个高斯成分的先验概率(或混合比例),满足 s u m k = 1 K π k = 1 sum_{k=1}^{K}\pi_k = 1 sumk=1Kπk=1 ( N ( x ∣ μ k , Σ k ) (\mathcal{N}(x|\mu_k, \Sigma_k) (N(xμk,Σk​</

评论 108
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鑫宝Code

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值