一些高中数学基础题(持续更新)

本文是一系列高中数学问题的解答,涉及解三角形、数列、立体几何和三角函数等多个知识点。通过具体题目,解释了如何运用正弦定理、余弦定理和等比数列的性质来解决问题,并求得了相关通项公式和几何图形的性质。
摘要由CSDN通过智能技术生成

索引

1.(解三角形)在① a c = 3 ac=\sqrt[{}]{3} ac=3 ,② c sin ⁡ A = 3 c\sin A=3 csinA=3,③ c = 3 b c=\sqrt[{}]{3}b c=3 b这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求 c c c的值。若问题中的三角形不存在,说明理由。
  问题:是否存在 Δ A B C \Delta ABC ΔABC,它的内角 A , B , C A,B,C A,B,C的对边分别是 a , b , c a,b,c a,b,c,且满足 sin ⁡ A = 3 sin ⁡ B \sin A=\sqrt[{}]{3}\sin B sinA=3 sinB C = π 6 C=\frac{\pi }{6} C=6π

解:
sin ⁡ A = 3 sin ⁡ B \sin A=\sqrt[{}]{3}\sin B sinA=3 sinB和正弦定理,有 a = 3 b a=\sqrt[{}]{3}b a=3 b
由余弦定理,有 c 2 = a 2 + b 2 − 2 a b cos ⁡ C = ( 3 b ) 2 + b 2 − 2 3 b 2 cos ⁡ π 6 = b 2   ⇒   c = b { {c}^{2}}={ {a}^{2}}+{ {b}^{2}}-2ab\cos C={ {\left( \sqrt[{}]{3}b \right)}^{2}}+{ {b}^{2}}-2\sqrt[{}]{3}{ {b}^{2}}\cos \frac{\pi }{6}={ {b}^{2}}\text{ }\Rightarrow \text{ }c=b c2=a2+b22abcosC=(3 b)2+b223 b2cos6π=b2  c=b
到此,我们知晓了该三角形三条边的信息,三个角的信息也就顺势可推。由余弦定理,
{ cos ⁡ A = b 2 + c 2 − a 2 2 b c = b 2 + b 2 − ( 3 b ) 2 2 b 2 = − 1 2 A ∈ ( 0 , π )   ⇒   A = 2 3 π \left\{ \begin{aligned} & \cos A=\frac{ { {b}^{2}}+{ {c}^{2}}-{ {a}^{2}}}{2bc}=\frac{ { {b}^{2}}+{ {b}^{2}}-{ {\left( \sqrt[{}]{3}b \right)}^{2}}}{2{ {b}^{2}}}=-\frac{1}{2} \\ & A\in \left( 0,\pi \right) \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }A=\frac{2}{3}\pi cosA=2bcb2+c2a2=2b2b2+b2(3 b)2=21A(0,π)  A=32π
{ cos ⁡ B = a 2 + c 2 − b 2 2 a c = ( 3 b ) 2 + b 2 − b 2 2 3 b 2 = 3 2 B ∈ ( 0 , π )   ⇒   B = 1 6 π   /   B = π − A − C = π − 2 3 π − 1 6 π = 1 6 π \left\{ \begin{aligned} & \cos B=\frac{ { {a}^{2}}+{ {c}^{2}}-{ {b}^{2}}}{2ac}=\frac{ { {\left( \sqrt[{}]{3}b \right)}^{2}}+{ {b}^{2}}-{ {b}^{2}}}{2\sqrt[{}]{3}{ {b}^{2}}}=\frac{\sqrt[{}]{3}}{2} \\ & B\in \left( 0,\pi \right) \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }B=\frac{1}{6}\pi \text{ }/\text{ }B=\pi -A-C=\pi -\frac{2}{3}\pi -\frac{1}{6}\pi =\frac{1}{6}\pi cosB=2aca2+c2b2=23 b2(3 b)2+b2b2=23 B(0,π)  B=61π / B=πAC=π32π61π=61π
所以该三角形的三边和三角分别为:
a = 3 b ,   b = b ,   c = b ,   A = 2 3 π ,   B = C = 1 6 π a=\sqrt[{}]{3}b,\text{ }b=b,\text{ }c=b,\text{ }A=\frac{2}{3}\pi ,\text{ }B=C=\frac{1}{6}\pi a=3 b, b=b, c=b, A=32π, B=C=61π

  1. 若添加条件① a c = 3 ac=\sqrt[{}]{3} ac=3 ,则有
    3 b × b = 3   ⇒   b = 1 \sqrt[{}]{3}b\times b=\sqrt[{}]{3}\text{ }\Rightarrow \text{ }b=1 3 b×b=3   b=1
    此时问题中的三角形存在且 c = b = 1 c=b=1 c=b=1
  2. 若添加条件② c sin ⁡ A = 3 c\sin A=\sqrt[{}]{3} csinA=3 ,则有
    c = 3 sin ⁡ A = 3 sin ⁡ 2 π 3 = 2 c=\frac{\sqrt[{}]{3}}{\sin A}=\frac{\sqrt[{}]{3}}{\sin \frac{2\pi }{3}}=2 c=sinA3 =sin32π3 =2
    此时问题中的三角形存在,且 c = 2 c=2 c=2
  3. 若添加条件③ c = 3 b c=\sqrt[{}]{3}b c=3 b,则与之前所求 c = b c=b c=b矛盾。故这样的三角形不存在。

  知识点

  1. 正弦定理: a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = k ∈ R > 0 \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=k\in { {\mathbb{R}}_{>0}} sinAa=sinBb=sinCc=kR>0
  2. 余弦定理,例 cos ⁡ A = b 2 + c 2 − a 2 2 b c \cos A=\frac{ { {b}^{2}}+{ {c}^{2}}-{ {a}^{2}}}{2bc} cosA=2bcb2+c2a2
  3. 完全解出一个三角形(指解出三角形的三边和三角)最少需要的信息:①任意1边和任意2角;②任意2边和其夹角;③3边。

2. (数列)已知公比大于1的等比数列 { a n } \left\{ { {a}_{n}} \right\} { an}满足 a 2 + a 4 = 20 ,   a 3 = 8 { {a}_{2}}+{ {a}_{4}}=20,\text{ }{ {a}_{3}}=8 a2+a4=20, a3=8
  1)求 { a n } \left\{ { {a}_{n}} \right\} { an}的通项公式;
  2)记 b m { {b}_{m}} bm { a n } \left\{ { {a}_{n}} \right\} { an}在区间 ( 0 , m ] \left( 0,m \right] (0,m] ( m ∈ N + ) \left( m\in { {N}^{+}} \right) (mN+)中项的个数,求数列 { b m } \left\{ { {b}_{m}} \right\} { bm}的前 100 100 100项和 S 100 { {S}_{100}} S100

解:

  1. { a n } \left\{ { {a}_{n}} \right\} { an}是等比数列,设其公比为 q ,   q > 1 q,\text{ }q>1 q, q>1
    a 2 + a 4 = 20 ,   a 3 = 8 { {a}_{2}}+{ {a}_{4}}=20,\text{ }{ {a}_{3}}=8 a2+a4=20, a3=8
    { a 1 q + a 1 q 3 = 20 a 1 q 2 = 8   ⇒   { a 1 q ( 1 + q 2 ) = 20 a 1 q = 8 q   ⇒   8 q ( 1 + q 2 ) = 20   ⇒   2 q 2 − 5 q + 2 = 0 \left\{ \begin{aligned} & { {a}_{1}}q+{ {a}_{1}}{ {q}^{3}}=20 \\ & { {a}_{1}}{ {q}^{2}}=8 \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\left\{ \begin{aligned} & { {a}_{1}}q\left( 1+{ {q}^{2}} \right)=20 \\ & { {a}_{1}}q=\frac{8}{q} \\ \end{aligned} \right.\text{ }\Rightarrow \text{ }\frac{8}{q}\left( 1+{ {q}^{2}} \right)=20\text{ }\Rightarrow \text{ }2{ {q}^{2}}-5q+2=0 { a1q+a1q3=20a1q2=8  a1q(1+q2)=20a1q=q8  q8(1+q2)=20  2q25q+2=0
    解得 q 1 = 1 2 < 1 ,   q 2 = 2 > 1 { {q}_{1}}=\frac{1}{2}<1,\text{ }{ {q}_{2}}=2>1 q1=21<1, q2=2>1。将 q = 2 q=2 q=2代入 a 1 q 2 = 8 { {a}_{1}}{ {q}^{2}}=8 a1q2=8解得 a 1 = 2 { {a}_{1}}=2 a1=2
    因此 { a n } \left\{ { {a}_{n}} \right\} { an}是以 2 2 2为首项, 2 2 2为公比的等比数列,通项公式为 a n = 2 × 2 n − 1 = 2 n { {a}_{n}}=2\times { {2}^{n-1}}={ {2}^{n}} an=2×2n1=2n n ∈ N + n\in { {N}^{+}} nN+
  2. 由1), { a n } = { 2 n } \left\{ { {a}_{n}} \right\}=\left\{ { {2}^{n}} \right\} { an}={ 2n}是一个严格递增的等比数列,且有 lim ⁡ n → ∞   a n = lim ⁡ n → ∞   2 n = ∞ \underset{n\to \infty }{\mathop{\lim }}\,{ {a}_{n}}=\underset{n\to \infty }{\mathop{\lim }}\,{ {2}^{n}}=\infty nliman=nlim2n=。因此, ∀ m ∈ N + \forall m\in { {N}^{+}} mN+ ∃ k ∈ N + ,   s . t . \exists k\in { {N}^{+}},\text{ }s.t. kN+, s.t. a k ≤ m   &   a k + 1 > m { {a}_{k}}\le m\text{ }\And \text{ }{ {a}_{k+1}}>m akm & ak+1>m,且 a 1 , a 2 , . . . , a k { {a}_{1}},{ {a}_{2}},...,{ {a}_{k}} a1,a2,...,ak均小于等于 m m m。因此也就有 b m = k { {b}_{m}}=k bm
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值