文章目录
- 前言
- 一、矩阵的直和
- 二、 H a d a m a r d \mathrm{Hadamard} Hadamard 积
- 三、矩阵化函数和向量化函数
- 四、 K r o n e c k e r \mathrm{Kronecker} Kronecker 积
-
- 1. K r o n e c k e r \mathrm{Kronecker} Kronecker 积定义
- 2. K r o n e c k e r \mathrm{Kronecker} Kronecker 积性质
- 3. K h a t r i − R a o \mathrm{Khatri-Rao} Khatri−Rao 积的定义:
- 4. 广义 K r o n e c k e r \mathrm{Kronecker} Kronecker 积
- 5. 广义 K r o n e c k e r \mathrm{Kronecker} Kronecker 积的性质
- 6. 向量化函数、 K r o n e c k e r \mathrm{Kronecker} Kronecker 乘幂和 K h a t r i − R a o \mathrm{Khatri-Rao} Khatri−Rao 积的性质.
- 五、 K r o n e c k e r \mathrm{Kronecker} Kronecker 积的应用
前言
一、矩阵的直和
1. 直和定义
定义 1: m × m m \times m m×m 矩阵 A A A 与 n × n n \times n n×n 矩阵 B B B 的直和记作 A ⊕ B A \oplus B A⊕B, 它是一个 ( m + n ) × ( m + n ) (m+n) \times (m+n) (m+n)×(m+n) 的矩阵, 定义为
A ⊕ B = [ A O m × n O n × m B ] (1) A \oplus B = \begin{bmatrix} A& O_{m \times n}\\ O_{n \times m}& B \end{bmatrix} \tag{1} A⊕B=[AOn×mOm×nB](1)
只是在对角线上堆加元素, 和求和并无关系, 有点像分块矩阵那种感觉. 当然也可以定义多个矩阵的直和.
B = ⊕ N − 1 i = 0 A i = A 0 ⊕ A 1 ⊕ ⋯ ⊕ A N − 1 = [ A 0 A 1 ⋱ A N − 1 ] (2) B = \underset{i=0}{\overset{N-1}{\oplus}} A_i = A_0 \oplus A_1 \oplus \dots \oplus A_{N-1} = \begin{bmatrix} A_0& & & \\ & A_1& & \\ & & \ddots& \\ & & & A_{N-1} \end{bmatrix} \tag{2} B=i=0⊕N−1Ai=A0⊕A1⊕⋯⊕AN−1=⎣⎢⎢⎡A0A1⋱AN−1⎦⎥⎥⎤(2)
2. 直和性质
根据定义直和有一些性质:
-
若 c c c 是常数, 则 c ( A ⊕ B ) = c A ⊕ c B c(A \oplus B) = cA \oplus cB c(A⊕B)=cA⊕cB
-
若 A ≠ B A \neq B A=B, 则 A ⊕ B ≠ B ⊕ A A \oplus B \neq B \oplus A A⊕B=B⊕A
-
矩阵直和的复共轭、转置、复共轭转置与逆矩阵
( A ⊕ B ) ∗ = A ∗ ⊕ B ∗ ( A ⊕ B ) T = A T ⊕ B T ( A ⊕ B ) H = A H ⊕ B H ( A ⊕ B ) − 1 = A − 1 ⊕ B − 1 , A , B 可 逆 \begin{aligned} (A \oplus B)^* &= A^* \oplus B^* \\ (A \oplus B)^{\mathrm{T}} &= A^{\mathrm{T}} \oplus B^{\mathrm{T}} \\ (A \oplus B)^{\mathrm{H}} &= A^{\mathrm{H}} \oplus B^{\mathrm{H}} \\ (A \oplus B)^{-1} &= A^{-1} \oplus B^{-1}, \quad A,B 可逆 \end{aligned} (A⊕B)∗(A⊕B)T(A⊕B)H(A⊕B)−1=A∗⊕B∗=AT⊕BT=AH⊕BH=A−1⊕B−1,A,B可逆
- 若 A , B A,B A,B 为 m × m m \times m m×m 矩阵, 且 C , D C,D C,D 为 n × n n \times n n×n 矩阵, 则
( A ± B ) ⊕ ( C ± D ) = ( A ⊕ C ) ± ( B ⊕ D ) ( A ⊕ C ) ( B ⊕ D ) = A B ⊕ C D \begin{aligned} (A \pm B) \oplus (C \pm D) &= (A \oplus C) \pm (B \oplus D) \\ (A \oplus C)(B \oplus D) &= AB \oplus CD \end{aligned} (A±B)⊕(C±D)(A⊕C)(B⊕D)=(A⊕C)±(B⊕D)=AB⊕CD
- 若 A , B , C A,B,C A,B,C 分别是 m × m , n × n , p × p 矩 阵 m \times m , n \times n , p \times p 矩阵 m×m,n×n,p×p矩阵, 则
A ⊕ ( B ⊕ C ) = ( A ⊕ B ) ⊕ C = A ⊕ B ⊕ C A \oplus (B \oplus C) = (A \oplus B) \oplus C = A \oplus B \oplus C A⊕(B⊕C)=(A⊕B)⊕C=A⊕B⊕C
- 矩阵直和的迹、秩、行列式:
t r ( ⊕ N − 1 i = 0 A i ) = ∑ i = 0 N − 1 t r ( A i ) r a n k ( ⊕ N − 1 i = 0 A i ) = ∑ i = 0 N − 1 r a n k ( A i ) d e t ( ⊕ N − 1 i = 0 A i ) = ∏ i = 0 N − 1 d e t ( A i ) \begin{aligned} \mathrm{tr}(\underset{i=0}{\overset{N-1}{\oplus}}A_i) &= \sum_{i=0}^{N-1}\mathrm{tr}(A_i)\\ \mathrm{rank}(\underset{i=0}{\overset{N-1}{\oplus}}A_i) &= \sum_{i=0}^{N-1}\mathrm{rank}(A_i) \\ \mathrm{det}(\underset{i=0}{\overset{N-1}{\oplus}}A_i) &= \prod_{i=0}^{N-1}\mathrm{det}(A_i) \end{aligned} tr(i=0⊕N−1Ai)rank(i=0⊕N−1Ai)det(i=0⊕N−1Ai)=i=0∑N−1tr(Ai)=i=0∑N−1rank(Ai)=i=0∏N−1det(Ai)
- 若 A , B A,B A,B 分别是 m × m , n × n m \times m , n \times n m×m,n×n 正交矩阵, 则 A ⊕ B A \oplus B A⊕B 是 ( m + n ) × ( m + n ) (m + n) \times (m + n) (m+n)×(m+n) 正交矩阵.
二、 H a d a m a r d \mathrm{Hadamard} Hadamard 积
1. H a d a m a r d \mathrm{Hadamard} Hadamard 积定义
定义 2: m × n m \times n m×n 矩阵 A = [ a i j ] A = [a_{ij}] A=[aij] 与 m × n m \times n m×n 矩阵 B = [ b i j ] B = [b_{ij}] B=[bij] 的 H a d a m a r d \mathrm{Hadamard} Hadamard 积记作 A ⊙ B A \odot B A⊙B, 它仍是一个 m × n m \times n m×n 矩阵, 定义为
A ⊙ B = [ a i j b i j ] (3) A \odot B = [a_{ij}b_{ij}] \tag{3} A⊙B=[aijbij](3)
不得不说这比矩阵乘法简单多了.
定理 1: 若 m × m m \times m m×m 矩阵 A , B A,B A,B 是正定 (或半正定) 的, 则它们的 H a d a m a r d \mathrm{Hadamard} Hadamard 积 A ⊙ B A \odot B A⊙B 也是正定 (或半正定) 的.
推论 1( F e j e r \mathrm{Fejer} Fejer 定理): 令 A A A 是一个 m × m m \times m m×m 矩阵, 则 A A A 是半正定矩阵, 当且仅当
∑ i = 1 m ∑ j = 1 m a i j b i j ≥ 0 \sum_{i=1}^{m}\sum_{j=1}^{m}a_{ij}b_{ij} \ge 0 i=1∑mj=1∑maijbij≥0
对所有 m × m m \times m m×m 半正定矩阵 B B B 成立.
定理 2: 令 A , B , C A,B,C A,B,C 为 m × n m \times n m×n 矩阵, 并且 1 = [ 1 , 1 , … , 1 ] T \mathbf{1} = [1,1,\dots,1]^{\mathrm{T}} 1=[1,1,…,1]T 为 n × 1 n \times 1 n×1 求和向量, D = d i a g ( d 1 , d 2 , … , d m ) D = \mathrm{diag}(d_1,d_2,\dots,d_m) D=diag(d1,d2,…,dm), 其中, d i = ∑ j = 1 n a i j d_i = \sum_{j=1}^{n}a_{ij} di=∑j=1naij, 则
t r ( A T ( B ⊙ C ) ) = t r ( ( A T ⊙ B T ) C ) (4) \mathrm{tr} \left ( A^{\mathrm{T}}(B \odot C) \right ) = \mathrm{tr}\left ( (A^{\mathrm{T}}\odot B^{\mathrm{T}}) C \right ) \tag{4} tr(AT(B⊙C))=tr((AT⊙BT)C)(4)
和
1 T A T ( B ⊙ C ) 1 = t r ( B T D C ) (5) \mathbf{1}^{\mathrm{T}}A^{\mathrm{T}}(B \odot C)\mathbf{1} = \mathrm{tr}(B^{\mathrm{T}}DC) \tag{5} 1TAT(B⊙C)1=tr(BTDC)(5)
定理 3: 令 A , B A,B A,B 为 n × n n \times n n×n 正方矩阵, 并且 1 = [ 1 , 1 , … , 1 ] T \mathbf{1} = [1,1,\dots,1]^{\mathrm{T}} 1=[1,1,…,1]T 为 n × 1 n \times 1 n×1 求和向量. 假定 M M M 是一个 n × n n \times n n×n 对角矩阵 M = d i a g ( μ 1 , μ 2 , … , μ n ) M = \mathrm{diag}(\mu_1,\mu_2,\dots,\mu_n) M=diag(μ1,μ2,…,μn), 而 m = M 1 m = M\mathbf{1} m=M1 为 n × 1 n \times 1 n×1 向量, 则有
t r ( A M B T M ) = m T ( A ⊙ B ) m (6) \mathrm{tr}(AMB^{\mathrm{T}}M) = m^{\mathrm{T}}(A \odot B)m \tag{6} tr(AM

本文详细介绍了矩阵的直和、Hadamard积、Kronecker积及其性质,包括它们的定义、性质、计算规则以及在矩阵方程求解中的应用。此外,还探讨了矩阵化函数和向量化函数的概念,以及Kronecker积在多信道处理和矩阵方程中的应用。
最低0.47元/天 解锁文章
1197

被折叠的 条评论
为什么被折叠?



