1、在yolov5/models下面新建一个EffectiveSEModule.py文件,在里面放入下面的代码
代码如下:
import torch
from torch import nn as nn
from timm.models.layers.create_act import create_act_layer
class EffectiveSEModule(nn.Module):
def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid'):
super(EffectiveSEModule, self).__init__()
self.add_maxpool = add_maxpool
self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
self.gate = create_act_layer(gate_layer)
def forward(self, x):
x_se = x.mean((2, 3), keepdim=True)
if self.add_maxpool:
# experimental codepath, may remove or change
x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True)
x_se = self.fc(x_se)
return x * self.gate(x_se)
2、找到yolo.py文件,进行更改内容
在29行加一个from models.EffectiveSEModule import EffectiveSEModule
, 保存即可
3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块EffectiveSEModule加入到yolov5s.yaml里面,并更改一些内容。更改如下
4、在yolo.py里面加入两行代码(335-337)
保存即可!