(超详细)9-YOLOV5改进-添加EffectiveSEModule注意力机制

本文介绍了如何在YOLOv5的架构中添加自定义的EffectiveSEModule,包括创建Python模块、导入到yolo.py、以及在yaml配置文件中整合。详细步骤包括在models文件夹下编写新模块,导入到yolo.py并调整模型配置以应用注意力机制。
摘要由CSDN通过智能技术生成

1、在yolov5/models下面新建一个EffectiveSEModule.py文件,在里面放入下面的代码
在这里插入图片描述

代码如下:

import torch
from torch import nn as nn
from timm.models.layers.create_act import create_act_layer


class EffectiveSEModule(nn.Module):
    def __init__(self, channels, add_maxpool=False, gate_layer='hard_sigmoid'):
        super(EffectiveSEModule, self).__init__()
        self.add_maxpool = add_maxpool
        self.fc = nn.Conv2d(channels, channels, kernel_size=1, padding=0)
        self.gate = create_act_layer(gate_layer)

    def forward(self, x):
        x_se = x.mean((2, 3), keepdim=True)
        if self.add_maxpool:
            # experimental codepath, may remove or change
            x_se = 0.5 * x_se + 0.5 * x.amax((2, 3), keepdim=True)
        x_se = self.fc(x_se)
        return x * self.gate(x_se)

2、找到yolo.py文件,进行更改内容
在29行加一个from models.EffectiveSEModule import EffectiveSEModule, 保存即可
在这里插入图片描述

3、找到自己想要更改的yaml文件,我选择的yolov5s.yaml文件(你可以根据自己需求进行选择),将刚刚写好的模块EffectiveSEModule加入到yolov5s.yaml里面,并更改一些内容。更改如下
在这里插入图片描述

4、在yolo.py里面加入两行代码(335-337)
保存即可!
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小兔子要健康

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值