【 1. 傅里叶变换的频移性质 】
时域连续时间信号:
e
±
j
Ω
0
t
f
(
t
)
=
e
±
j
2
π
f
0
t
f
(
t
)
⇔
X
(
f
∓
f
0
)
时域连续时间信号:e^{±jΩ_0t }f(t)=e^{±j2\pi f_0t }f(t) \Leftrightarrow X(f∓f_0)
时域连续时间信号:e±jΩ0tf(t)=e±j2πf0tf(t)⇔X(f∓f0)
数字域离散时间信号:
e
±
j
w
0
n
f
(
n
)
=
e
±
j
2
π
f
0
f
s
n
f
(
n
)
⇔
X
(
f
∓
f
0
)
数字域离散时间信号:e^{±jw_0n }f(n)=e^{±j2\pi \frac{f_0}{f_s}n }f(n) \Leftrightarrow X(f∓f_0)
数字域离散时间信号:e±jw0nf(n)=e±j2πfsf0nf(n)⇔X(f∓f0)
其中,
f
f
f 为信号实际频率(单位为 赫兹 Hz),
Ω
=
2
π
f
Ω=2\pi f
Ω=2πf 为模拟角频率(单位为 赫兹 Hz),
w
=
2
π
f
0
f
s
w=2\pi \frac{f_0}{f_s}
w=2πfsf0 为数字角频率(单位为 弧度/样值rad/sample)。从时域到数字域式子的改变是由于采样的原因即
t
=
n
×
t
s
=
n
f
s
t=n\times t_s=\frac{n}{f_s}
t=n×ts=fsn,有关数字角频率和模拟角频率的详情请转到博主的这篇文章:数字角频率w、模拟角频率Ω 。
- 将一个时域连续信号乘以复指数信号
e
j
2
π
f
0
t
e^{j2\pi f_0 t}
ej2πf0t,可以使频谱向上搬移
f
0
f_0
f0 Hz,频谱从
X
(
f
)
X(f)
X(f) 变为
X
(
f
−
f
0
)
X(f-f_0)
X(f−f0),该过程被称为 上变频;
类似的,将一个时域信号乘以复指数信号 e − j 2 π f 0 t e^{-j2\pi f_0 t} e−j2πf0t,可以将其频谱向下搬移 f 0 f_0 f0 Hz,频谱从 X ( f ) X(f) X(f) 变为 X ( f + f 0 ) X(f+f_0) X(f+f0),该过程被称为 下变频。
上变频和下变频又统称为 正交混频。 - 将一个数字域离散信号乘以复指数信号
e
j
2
π
f
0
f
s
n
e^{j2\pi \frac{f_0}{f_s}n }
ej2πfsf0n,可以使频谱向上搬移
f
0
f_0
f0 Hz,频谱从
X
(
f
)
X(f)
X(f) 变为
X
(
f
−
f
0
)
X(f-f_0)
X(f−f0);
类似的,将一个数字域离散信号乘以复指数信号 e − j 2 π f 0 f s n e^{-j2\pi \frac{f_0}{f_s}n } e−j2πfsf0n,可以将其频谱向下搬移 f 0 f_0 f0 Hz,频谱从 X ( f ) X(f) X(f) 变为 X ( f + f 0 ) X(f+f_0) X(f+f0)。
【 2. 仿真验证 】
%%%% 实现频谱向上搬移200Hz
%% [预处理]
clc; %清除命令窗口
clear; %清除工作空间的变量和函数
clf; %清除图形
%% [采样参数]
fs=4096; %采样频率 (Hz)
ts=1/fs; %采样周期 (s)
N=5000; %采样点数 (个)
n=0:N-1; %采样点索引
t=n*ts; %采样时间轴
%% [被采信号]
fa=100; %信号a的频率
fb=900; %信号b的频率
xn=2.5+sin(2*pi*fa*t)+3*sin(2*pi*fb*t); %被采信号=信号a+信号b
%% [原信号的频谱]
M=4096; %FFT运算点数
X=fft(xn,M); %FFT输出值
X=fftshift(X); %频域搬移
k=-M/2:M/2-1; %频率点索引
f=fs*k/M; %频率轴
subplot(1,2,1);
stem(f,abs(X)); %序列图
xlabel('频率'); %横轴坐标
ylabel('幅度'); %纵轴坐标
title("原信号的频谱");
grid; %显示表格线
%% [频移后的频谱]
xn_shift=xn.*exp(1i*2*pi*200/fs.*n);
M=4096; %FFT运算点数
X_shiift=fft(xn_shift,M); %FFT输出值
X_shiift=fftshift(X_shiift); %频域搬移
k=-M/2:M/2-1; %频率点索引
f=fs*k/M; %频率轴
%% [作图]
subplot(1,2,2);
stem(f,abs(X_shiift)); %序列图
xlabel('频率'); %横轴坐标
ylabel('幅度'); %纵轴坐标
title('频移后的频谱');
grid; %显示表格线