原来这就是带通信号采样定理与频谱搬移过程

在这里插入图片描述

前言

作为FPGA工程师或相关硬件工程师,不知道大家在做ADC采集时是否经常有以下类似疑问

  • 奈奎斯特采样定理要求采样率是信号频率的2倍以上,这32MHZ的采样率的ADC怎么采集70±10MHZ信号?
  • 假如32MHZ的采样率ADC能够采集70±10MHZ信号,那么在FPGA中看到的信号应该多少频率?
  • 带通信号本身的带宽并不一定很宽,那么能不能采用比奈奎斯特采样频率更低的频率来采样呢?

以上类似的问题,就需要带通喜好采样定理与频谱搬移的原理来回答了。

带通信号采样定理

根据信号的傅里叶变换性质可知,实信号的频谱一定是关于零频轴呈对称分布的,如下图1-11(a)所示。

所以以频率fs对其采样后的信号频谱,其实是对原信号以fs为周期搬移的结果,如下图1-11(b)所示。

在这里插入图片描述

显然,不失真重建信号的充要条件是搬移后的频谱互不重叠。取图(b)中的第k个周期,该周期内的频谱为原x(f)的正频谱和负频谱的k次正向搬移,为保证频谱不混叠,要求:
{ k f s − f L ≤ f L k f s − f H ≥ − f s + f H ( 1 − 13 ) \begin{cases} kf_s-f_L \leq f_L \\ kf_s - f_H \geq - f_s + f_H \end{cases} \quad \quad (1-13) {kfsfLfLkfsfHfs+fH(113)
经过简单的整理,可以得到带通信号采样定理:采样频率并不需要一定大于信号最高频率的 2 倍,用较低的采样频率也可以正确反映带通信号的特性。对于某带通信号,假设其中心频率为f₀,上、下边带的截止频率分别为
f H = f 0 + B / 2 、 f L = f 0 − B / 2 f_H=f_0+B/2\quad 、\quad f_L=f_0-B/2 fH=f0+B/2fL=f0B/2
对其进行均匀采样,满足采样值无失真地重建信号的充要条件为:
2 f H k + 1 ≤ 2 f L k , 0 ≤ k ≤ K , K = [ f L / B ] ( 1 − 14 ) \frac{2f_H}{k+1}\leq \frac{2f_L} {k}, \quad \quad 0\leq k \leq K,K=[f_L/B] \quad \quad (1-14) k+12fHk2fL,0kK,K=[fL/B]114
式中, K=[f_L/B] 表示不大于f_L/B的最大整数。

根据式(1-14),对带通信号进行采样时,采样频率的范围是由一些不连续区间组合而成的。对于带宽为 B 的带通信号,最低采样频率是多少呢?

我们需要对式(1-13)进一步进行分析。采样频率 fs的范围关键在于 k值的选取。

  • (1) 当fL<B时, k=0, 此时fs≥2fH, 等同于奈奎斯特采样定理。

  • (2)当fL=mB, m为大于0的整数时, fs的最小取值为2B。

  • (3)其他情况, fs≥2B。也就是说,只有当带通信号的最低频率等于带宽的整数倍时,满足频谱不混叠条件的最低采样频率才是信号带宽的2倍,否则采样速率应大于信号带宽的2倍

带通采样的频谱搬移实例

假设在某个数字通信系统中,信号的带宽 B为10.4MHz,载波频率f₀是典型的70MHz,满足采样条件的采样频率 fs是多少呢?根据式(1-13)不难算出,满足无失真重建信号的采样频率(单位为MHz) fs为:

(25.0667,25.92)∪(30.08,32.4)∪(37.6,43.2)∪(50.1333,64.8)∪(75.2,129.6)∪(150.4, inf)

假设取 fs=32 MHz,则采样后的信号频谱是如何变换的呢?对于数字通信接收端来讲,对信号采样后通常需要进行解调处理,需要产生与载波信号相同频率的本地载波信号来实现零中频搬移。

采用32MHz的信号直接对70MHz的中频信号采样后,数据速率就变成了32 MHz

如果要产生70 MHz的载波信号,则载波信号的数据速率必须大于140 MHz。如何实现解调呢?

在分析奈奎斯特采样定理及带通采样定理时,我们已经了解到,采样的过程其实是对信号的频谱搬移过程

采样频率为fs,信号中心频率为f₀,则采样后信号的中心频率fas变换为
f a s = ± p f s ± f 0 , p 为正整数 ( 1 − 15 ) f_as=±pf_s±f_0,\quad\quad p为正整数\quad\quad(1-15) fas=±pfs±f0,p为正整数115

简单理解频谱搬移后的信号频率:fas= f0-pfs<fs ,p为正整数

根据奈奎斯特采样定理,采样频率为 fs时,只能无失真地处理小于 f/2的信号。对于带通信号来讲,也只能处理信号带宽全部处于f₀/2以内的那部分频率信号。

根据式(1-15),容易计算出采样后信号的中心频率fas取值为6MHz、26MHz、38 MHz等。因此,采样后需要处理的中心频率为6MHz,信号频率范围为(0.8MHz,11.2 MHz)。本地载波信号的频率只需为6 MHz即可。也可以理解为, 32 MHz对(64.8 MHz, 75.2 MHz) 范围内的信号采样,等同于对(0.8MHz,11.2MHz)范围内的信号采样后获得的信号。

这里的“等同”有一个前提条件,即信号频带外没有任何噪声。
——————————————————————————————————————————
如果本文对你有所帮助,欢迎点赞、转发、收藏、评论让更多人看到,赞赏支持就更好了。

如果对文章内容有疑问,请务必清楚描述问题,留言评论或私信告知我,我看到会回复。
——————————————————————————————————————————

在这里插入图片描述

欢迎FPGA同行者关注微信公众号FPGA加速者,获取更多精彩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风中月隐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值