理论知识
以前也学过傅里叶变换的知识,但是一直没有理解进行傅里叶变换之后有什么作用,这次通过对两路正弦信号的混频并进行频域的分析,让我对幅频特性有了一个深刻的认识。
在数学中我们都学过积化和差公式,两个不同频率的信号相乘可以化简为两个频率的信号相加的而形式。
matlab代码
clc;
clear;
fs=50e6;
f1=1e6;
f2=5e6;
n=0:2047;
s_1=sin(2*pi*f1*n/fs);
s_2=sin(2*pi*f2*n/fs);
%s_1与s_2混频
s_12=s_1.*s_2; %混频后的两个频率分量,一个是6MHz,一个是4MHz
%%%% 频域分析 %%%%
fft_out=fft(s_12,2048);
fft_abs=abs(fft_out);
%%%频率分辨率(每个点表示多少频率) = 采样频率fs/fft计算的点数
%%%这个问题中就是50M/2048
fft的采样点数一般都是与信号中的采样点数(n)(也叫做信号的长度)是相同的;当然写fft的时候也可以不写计算点数,那么就默认与信号的长度是相同的。
信号分析
将两个信号混频后得到的信号时域图如下所示:
从时域图中是无法得到有用的信息的,我们也看不出是哪两个频率的信号叠加后的结果,
所以对其进行傅里叶变换之后的频域的图形为:
这时进行傅里叶变换是很容易看出来有哪些频率的信号,具体的方法就是找到幅频图中对应的点,比如说上面这个图中第一个峰值对应的点是165,则使用165乘上频率分辨率
165*50M/2048=4M,这就是混频信号中的5M-1M=4M,
同样的方法可以得到另外一个频率的信号。
所以对于一些在时域中不易观察的信号,完全可以转换到频域去观察他的特性。