FIR滤波器的设计与原理及基础知识
有限长单位脉冲响应(FIR)滤波器的设计方法
窗口设计法,频率采样法
FIR滤波器的差分方程描述:可以看到他的差分方程和IIR的差分方程还是有很大的区别
FIR数字滤波器的优点:很容易获得严格的线性相位,避免被处理的信号发生相位失真,这一特点在宽频带信号处理、阵列信号处理、数据传输等系统中非常重要
线性相位FIR滤波器的特点:
线性相位意味着一个系统的相频特性是频率的线性函数,即
举个例子:如果一个频率是f1的信号,相移是-180°,那么频率为2f1的信号相依就是-360°,频率为4f1的信号相依就是-720°
式中的a是创数,此时通过这一系统的各频率分量的时延为一相同的常数,系统的群时延为:
线性相位FIR滤波器的DTFT为:
用欧拉公式展开,可以得到:
满足上式的条件是:
条件这个式子说明,对于任何N值都可以获得相位延迟为α=(N-1)/2的线性相位特性,此时FIR滤波器的群时延α为h(n)阶数的一般,α也为单位脉冲响应的终点,这个式子也说明h(n)必须以此中点呈偶对称
另一种情况除了上述的线性相位外,还有一附加相位,即
求导以后系统的群时延仍然为一个常数α
总体来说也就分为这四种情况,N是奇数或偶数,h(n)是奇对称或偶对称
幅度特性:
由上图可知h(n)有四种情况,所以对应的幅度特性也有四种
(1)h(n)偶对称,N为奇数
h(n)=h(N-1-n),这种情况经过整理,可以得到他的幅频特性为:
由于cos(nw)对于w=0、pi、2pi这些点都是偶对称的,因此H(w)对于w=0、pi、2pi也是偶对称的
(2)h(n)偶对称,N为偶数
这种情况下的一个特点是cos[w(n-1/2)]对于w=pi呈奇对称,当w=pi时,cos[pi(n-1/2)]=0,因此H(pi)=0,即H(z)在z=-1处必然有一个零点,而且H(w)对于w=pi呈奇对称。
(3)h(n)奇对称,N为奇数
(4)h(n)奇对称,N为偶数
窗函数设计法
从上面可以看出,hd(n)有一定的相位的移动:
窗口函数对理想特性的影响:
过渡带两旁产生尖峰和余振(带内、带外起伏),取决于WR(w)的旁瓣,旁瓣多,余振多;旁瓣相对值大,肩峰强,与N无关。(取决于窗口形状)
在平时的使用过程中也基本上不使用矩形窗,而会使用其他的窗函数,例如汉宁窗,汉明窗
使用三个中心频率不同的汉宁窗,这样就差不多可以把第一旁瓣给抵消了,同时加强了主瓣
凯塞窗:
梳状滤波器
梳状滤波器指的就是这个滤波器有好几个通带,好几个阻带,像梳子一样