Tensorflow学习笔记1-基础与常用函数

百度百科对Tensorflow的介绍

TensorFlow™是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief [1] 。
Tensorflow拥有多层级结构,可部署于各类服务器、PC终端和网页并支持GPU和TPU高性能数值计算,被广泛应用于谷歌内部的产品开发和各领域的科学研究 [1-2] 。
TensorFlow由谷歌人工智能团队谷歌大脑(Google Brain)开发和维护,拥有包括TensorFlow Hub、TensorFlow Lite、TensorFlow Research Cloud在内的多个项目以及各类应用程序接口(Application Programming Interface, API) [2] 。自2015年11月9日起,TensorFlow依据阿帕奇授权协议(Apache 2.0 open source license)开放源代码 [2] 。

Tensorflow 2.0特点

在这里插入图片描述

Tensorflow基础

一、如何创建一个Tensor

1.创建一个张量

tf.constant(张量内容,dtype= 数据类型( 可选))

import tensorflow as tf
a=tf.constant([1,5],dtype=tf.int64)
print(a)
print(a.dtype)
print(a.shape)

运行结果:
<tf.Tensor([1,5], shape=(2 , ) , dtype=int64)
<dtype: 'int64'>
(2,)

2.将Numpy的数据类型转换为Tensor数据类型

tf. convert_to_tensor( 数据名,dtype= 数据类型( 可选))

import tensorflow as tf
import numpy as np
a = np.arange(0, 5)
b = tf.convert_to_tensor( a, dtype=tf.int64 )
print(a)
print(b)

运行结果:
[0 1 2 3 4]
tf.Tensor([0 1 2 3 4], shape=( 5 , ), dtype=int64)

3.创建全为0,1,指定值的张量

创建全为0的张量 的张量
tf. zeros( 维度)
创建全为1的张量 的张量
tf. ones( 维度)
创建全为指定值的张量
tf. fill( 维度,指定值)

a = tf.zeros([2, 3])
b = tf.ones(4)
c = tf.fill([2, 2], 9)
print(a)
print(b)
print(c)

运行结果:
tf.Tensor([[0. 0. 0.] [0. 0. 0.]], shape=(2, 3), dtype=float32)
tf.Tensor([1. 1. 1. 1.], shape=(4, ), dtype=float32)
tf.Tensor([[9 9] [9 9]], shape=(2, 2), dtype=int32)

4.生成正态分布的随机数

生成正态分布的随机数,默认均值为0 ,标准差为1
tf. random.normal ( 维度,mean= 均值,stddev= 标准差)
生成截断式正态分布的随机数
tf. random.truncated_normal ( 维度,mean= 均值,stddev= 标准差)

d = tf.random.normal ([2, 2], mean=0.5, stddev=1)
print(d)
e = tf.random.truncated_normal ([2, 2], mean=0.5, stddev=1)
print(e)

运行结果:
tf.Tensor(
[[0.7925745 0.643315 ]
[1.4752257 0.2533372]], shape=(2, 2), dtype=float32)
tf.Tensor(
[[ 1.3688478 1.0125661 ]
[ 0.17475659 -0.02224463]], shape=(2, 2), dtype=float32)

5.生成均匀分布的随机数

生成均匀分布随机数 [ minval, maxval )
tf. random. uniform( 维度,minval= 最小值,maxval=最大值 )

f = tf.random.uniform([2, 2], minval=0, maxval=1)
print(f)

运行结果
tf.Tensor(
[[0.28219545 0.15581512]
[0.77972126 0.47817433]], shape=(2, 2), dtype=float32)

二、常用函数

强制tensor转换为该数据类型 转换为该数据类型
tf.cast ( 张量名,dtype= 数据类型)
计算张量维度上元素的最小值
tf.reduce_min ( 张量名)
计算张量维度上元素的最大值
tf.reduce_max ( 张量名)

x1 = tf.constant ([1., 2., 3.],
dtype=tf.float64)
print(x1)
x2 = tf.cast (x1, tf.int32)
print(x2)
print (tf.reduce_min(x2),
tf.reduce_max(x2))

运行结果:
tf.Tensor([1. 2. 3.], shape=(3,), dtype=float64)
tf.Tensor([1 2 3], shape=(3,), dtype=int32)
tf.Tensor(1, shape=(), dtype=int32)
tf.Tensor(3, shape=(), dtype=intt32)

在这里插入图片描述

计算张量沿着指定维度的平均值
tf.reduce_mean ( 张量名,axis= 操作轴)
计算张量沿着指定维度的和
tf.reduce_sum ( 张量名,axis=操作轴)

x=tf.constant( [ [ 1, 2, 3],
[ 2, 2, 3] ] )
print(x)
print(tf.reduce_mean( x ))
print(tf.reduce_sum( x, axis=1 ))

运行结果:
tf.Tensor(
[[1 2 3]
[2 2 3]], shape=(2, 3), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor([6 7], shape=(2,), dtype=int32)

tf.Variable () 将变量 将变量 标记为“可训练” ,被标记的变量会在反向传播
中记录梯度信息。神经网络训练中,常用该函数标记待训练参数。
f.Variable( 初始值)

w = tf.Variable(tf.random.normal([2, 2], mean=0, stddev=1))

Tensorflow中的数学运算
在这里插入图片描述

实现两个张量的对应元素相加
tf.add ( 张量1 ,张量2)
实现两个张量的对应元素相减
tf.subtract ( 张量1 ,张量2)
实现两个张量的对应元素相乘
tf.multiply ( 张量1 ,张量2)
实现两个张量的对应元素相除
tf.divide ( 张量1,张量2)
在这里插入图片描述

a = tf.ones([1, 3])
b = tf.fill([1, 3], 3.)
print(a)
print(b)
print(tf.add(a,b))
print(tf.subtract(a,b))
print(tf.multiply(a,b))
print(tf.divide(b,a))

运行结果:
tf.Tensor([[1. 1. 1.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32
tf.Tensor([[4. 4. 4.]], shape=(1, 3), dtype=float32)
tf.Tensor([[-2. -2. -2.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)
tf.Tensor([[3. 3. 3.]], shape=(1, 3), dtype=float32)

计算某个张量的平方
tf.square ( 张量名)
计算某个张量的n次方 次方
tf.pow ( 张量名,n 次方数)
计算某个张量的开方
tf.sqrt (张量名)

a = tf.fill([1, 2], 3.)
print(a)
print(tf.pow(a, 3))
print(tf.square(a))
print(tf.sqrt(a))

运行结果:
tf.Tensor([[3. 3.]], shape=(1, 2),dtype=float32)
tf.Tensor([[27. 27.]], shape=(1, 2),dtype=float32)
tf.Tensor([[9. 9.]], shape=(1, 2),dtype=float32)
tf.Tensor([[1.7320508 1.7320508]],shape=(1, 2), dtype=float32)

tf.data.Dataset.from_tensor_slices

切分传入张量的第一维度,生成输入特征/标签对,构建数据集 标签对,构建数据集
data = tf.data.Dataset.from_tensor_slices(( 输入特征, 标签))

features = tf.constant([12,23,10,17])
labels = tf.constant([0, 1, 1, 0])
dataset = tf.data.Dataset.from_tensor_slices((features, labels))
print(dataset)
for element in dataset:
print(element)

运行结果:
<TensorSliceDataset shapes: ((),()), types: (tf.int32, tf.int32))>
(<tf.Tensor: id=9, shape=(), dtype=int32, numpy=12>, <tf.Tensor: id=10, shape=(),
dtype=int32, numpy=0>)
(<tf.Tensor: id=11, shape=(), dtype=int32, numpy=23>, <tf.Tensor: id=12, shape=(),
dtype=int32, numpy=1>)
(<tf.Tensor: id=13, shape=(), dtype=int32, numpy=10>, <tf.Tensor: id=14, shape=(),
dtype=int32, numpy=1>)
(<tf.Tensor: id=15, shape=(), dtype=int32, numpy=17>, <tf.Tensor: id=16, shape=(),
dtype=int32, numpy=0>)

tf.GradientTape

with 结构记录计算过程,gradient求出张量的梯度 求出张量的梯度
with tf.GradientTape( ) as tape:
若干个计算过程
grad=tape.gradient(函数,对谁求导)

with tf.GradientTape( ) as tape:
w = tf.Variable(tf.constant(3.0))
loss = tf.pow(w,2) 
grad = tape.gradient(loss,w)
print(grad)

运行结果:
tf.Tensor(6.0, shape=(), dtype=float32)

在这里插入图片描述
enumerate

enumerate 是python 的内建函数,它可遍历每个元素(如列表、元组 如列表、元组
或字符串 或字符串), , 组合为:索引 元素,常在 ,常在for循环中使用。 循环中使用。
enumerate( 列表名)

seq = ['one', 'two', 'three']
for i, element in enumerate(seq):
print(i, element)

运行结果:
0 one
1 two
2 three

tf.one_hot:独热编码(one-hot encoding):在分类问题中,常用独热码做标签, ):在分类问题中,常用独热码做标签,
标记类别: 标记类别:1 表示是,0表示非。

tf.one_hot() 函数将待转换数据,转换为one-hot形式的数据输出。 形式的数据输出。
tf.one_hot ( 待转换数据, depth= 几分类)

classes = 3
labels = tf.constant([1,0,2]) #  输入的元素值最小为0 ,最大为2
output = tf.one_hot( labels, depth=classes )
print(output)

运行结果:
[[0. 1. 0.]
[1. 0. 0.]
[0. 0. 1.]], shape=(3, 3), dtype=float32)

tf.nn.softmax
在这里插入图片描述

当n 分类的n个输出 个输出 ( (y 0 , ,y 1 , …… y n-1 )通过 )通过softmax( ) 函数, 函数,
便符合概率分布了。
在这里插入图片描述

y = tf.constant ( [1.01, 2.01, -0.66] )
y_pro = tf.nn.softmax(y)
print("After softmax, y_pro is:", y_pro)

输出结果:
After softmax, y_pro is: tf.Tensor([0.25598174 0.69583046
0.0481878], shape=(3,), dtype=float32)

assign_sub:自动更新参数值

赋值操作,更新参数的值并返回。
w.assign_sub (w 要自减的内容)
调用assign_sub 前,先用 tf.Variable 定义变量 w 为可训练(可自更新)。

w.assign_sub (w 要自减的内容)
w = tf.Variable(4)
w.assign_sub(1)# w-=1 即 w = w - 1
print(w)

运行结果:
<tf.Variable 'Variable:0' shape=() dtype=int32, numpy=3>

tf.argmax

返回张量沿指定维度最大值的索引
tf.argmax ( 张量名,axis=操作轴)在这里插入图片描述

import numpy as np
test = np.array([[1, 2, 3], [2, 3, 4], [5, 4, 3], [8, 7, 2]])
print(test)
print( tf.argmax (test, axis=0)) # 返回每一列(经度)最大值的索引 返回每一列(经度)最大值的索引
print( tf.argmax (test, axis=1)) # 返回每一行(纬度)最大值的索引

运行结果:
[[1 2 3]
[2 3 4]
[5 4 3]
[8 7 2]]
tf.Tensor([3 3 1], shape=(3,), dtype=int64)
tf.Tensor([2 2 0 0], shape=(4,), dtype=int64)

三、神经网络实现鸢尾花分类

# -*- coding: UTF-8 -*-
# 利用鸢尾花数据集,实现前向传播、反向传播,可视化loss曲线

# 导入所需模块
import tensorflow as tf
from sklearn import datasets
from matplotlib import pyplot as plt
import numpy as np

# 导入数据,分别为输入特征和标签
x_data = datasets.load_iris().data
y_data = datasets.load_iris().target

# 随机打乱数据(因为原始数据是顺序的,顺序不打乱会影响准确率)
# seed: 随机数种子,是一个整数,当设置之后,每次生成的随机数都一样(为方便教学,以保每位同学结果一致)
np.random.seed(116)  # 使用相同的seed,保证输入特征和标签一一对应
np.random.shuffle(x_data)
np.random.seed(116)
np.random.shuffle(y_data)
tf.random.set_seed(116)

# 将打乱后的数据集分割为训练集和测试集,训练集为前120行,测试集为后30行
x_train = x_data[:-30]
y_train = y_data[:-30]
x_test = x_data[-30:]
y_test = y_data[-30:]

# 转换x的数据类型,否则后面矩阵相乘时会因数据类型不一致报错
x_train = tf.cast(x_train, tf.float32)
x_test = tf.cast(x_test, tf.float32)

# from_tensor_slices函数使输入特征和标签值一一对应。(把数据集分批次,每个批次batch组数据)
train_db = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32)
test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)

# 生成神经网络的参数,4个输入特征故,输入层为4个输入节点;因为3分类,故输出层为3个神经元
# 用tf.Variable()标记参数可训练
# 使用seed使每次生成的随机数相同(方便教学,使大家结果都一致,在现实使用时不写seed)
w1 = tf.Variable(tf.random.truncated_normal([4, 3], stddev=0.1, seed=1))
b1 = tf.Variable(tf.random.truncated_normal([3], stddev=0.1, seed=1))

lr = 0.1  # 学习率为0.1
train_loss_results = []  # 将每轮的loss记录在此列表中,为后续画loss曲线提供数据
test_acc = []  # 将每轮的acc记录在此列表中,为后续画acc曲线提供数据
epoch = 500  # 循环500轮
loss_all = 0  # 每轮分4个step,loss_all记录四个step生成的4个loss的和

# 训练部分
for epoch in range(epoch):  #数据集级别的循环,每个epoch循环一次数据集
    for step, (x_train, y_train) in enumerate(train_db):  #batch级别的循环 ,每个step循环一个batch
        with tf.GradientTape() as tape:  # with结构记录梯度信息
            y = tf.matmul(x_train, w1) + b1  # 神经网络乘加运算
            y = tf.nn.softmax(y)  # 使输出y符合概率分布(此操作后与独热码同量级,可相减求loss)
            y_ = tf.one_hot(y_train, depth=3)  # 将标签值转换为独热码格式,方便计算loss和accuracy
            loss = tf.reduce_mean(tf.square(y_ - y))  # 采用均方误差损失函数mse = mean(sum(y-out)^2)
            loss_all += loss.numpy()  # 将每个step计算出的loss累加,为后续求loss平均值提供数据,这样计算的loss更准确
        # 计算loss对各个参数的梯度
        grads = tape.gradient(loss, [w1, b1])

        # 实现梯度更新 w1 = w1 - lr * w1_grad    b = b - lr * b_grad
        w1.assign_sub(lr * grads[0])  # 参数w1自更新
        b1.assign_sub(lr * grads[1])  # 参数b自更新

    # 每个epoch,打印loss信息
    print("Epoch {}, loss: {}".format(epoch, loss_all/4))
    train_loss_results.append(loss_all / 4)  # 将4个step的loss求平均记录在此变量中
    loss_all = 0  # loss_all归零,为记录下一个epoch的loss做准备

    # 测试部分
    # total_correct为预测对的样本个数, total_number为测试的总样本数,将这两个变量都初始化为0
    total_correct, total_number = 0, 0
    for x_test, y_test in test_db:
        # 使用更新后的参数进行预测
        y = tf.matmul(x_test, w1) + b1
        y = tf.nn.softmax(y)
        pred = tf.argmax(y, axis=1)  # 返回y中最大值的索引,即预测的分类
        # 将pred转换为y_test的数据类型
        pred = tf.cast(pred, dtype=y_test.dtype)
        # 若分类正确,则correct=1,否则为0,将bool型的结果转换为int型
        correct = tf.cast(tf.equal(pred, y_test), dtype=tf.int32)
        # 将每个batch的correct数加起来
        correct = tf.reduce_sum(correct)
        # 将所有batch中的correct数加起来
        total_correct += int(correct)
        # total_number为测试的总样本数,也就是x_test的行数,shape[0]返回变量的行数
        total_number += x_test.shape[0]
    # 总的准确率等于total_correct/total_number
    acc = total_correct / total_number
    test_acc.append(acc)
    print("Test_acc:", acc)
    print("--------------------------")

# 绘制 loss 曲线
plt.title('Loss Function Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Loss')  # y轴变量名称
plt.plot(train_loss_results, label="$Loss$")  # 逐点画出trian_loss_results值并连线,连线图标是Loss
plt.legend()  # 画出曲线图标
plt.show()  # 画出图像

# 绘制 Accuracy 曲线
plt.title('Acc Curve')  # 图片标题
plt.xlabel('Epoch')  # x轴变量名称
plt.ylabel('Acc')  # y轴变量名称
plt.plot(test_acc, label="$Accuracy$")  # 逐点画出test_acc值并连线,连线图标是Accuracy
plt.legend()
plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值