原文
navguide.pdf
https://kaiyuzheng.me/documents/navguide.pdf
参数解析:
sim_time:可以认为是允许机器人按照采样速度运行的时间
- 如果将其设置比较小(sim_time<=2)
将有可能导致在经过门或者比较狭窄的空间时的表现不太好,因为没有足够的时间来让机器人人规划处最优路径- 将其设置为比较大(sim_time>=5)
设置为比较大会规划出一个长曲线,从而显得不是那么灵活- 通常将其设置为4,即便对于高性能的处理器也足够用了
local_planner 除了sim_time之外还应该关注Velocity samples
Velocity samples :包含vx_sample,vy_sample,vth_sample。分别是DWA算法在进行速度空间采样时在X,Y方向与旋转上的采样个数。通常选取多少采样数取决于处理器的性能。
通常会将vth_sample设置的比直线速度要更高,因为旋转的处理比平移更加麻烦
如果没有用到y方向的位移(一般只有万向轮:麦克纳姆轮等会用到)将vy_sample设为0即可
通常设置vx_sample = 20; vth_sample = 40
Simulation granularity:模拟步长
表示模拟中的最小估计单元
该值越小,对处理器的性能要求越高。
通常默认值0.025就足够使用
DWA局部规划 轨迹评分(DWA Local Planner : Trajactory Scoring)
DWA 的轨迹评分由三部分组成,轨迹评分越低越好
cost = pdist_scale + gdist_scale + occdist_scale
- pdist_scale:表示局部规划与全局规划的相近程度
- gdist_scale:表示机器人无论在哪条路径上应该去尝试接近局部目标的程度
增加该参数可以使机器人更小的依附于全局路径
- occdist_scale:表示机器人尝试避开障碍物的趋势(程度)
该数值过高会导致机器人因为犹豫不决而卡在原地