3D CNN for AD论文阅读(一)--Attention-based 3D Convolutional Network for Alzheimer's Disease Diagnosis

论文:《Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploraion》

摘要

虽然深度学习在医学影像数据的疾病分类上已经有了很大的发展,但人们还是不知道该如何解释卷积神经网络是如何做出分类的。作者认为应重视神经网络在训练过程中的注意力并提供与疾病相关联的那些脑区能够很好地帮助提高分类效果。于是该文就提出了一个attention-based 3D ResNet模型来诊断AD并且探索潜在的生物标志物。

背景

  • 过去的数十年里,有很多研究人员使用传统的机器学习方法来对医学图像进行分类研究,但这些方法需要前期复杂的数据处理工作,如手动提取特征,降维等处理。
  • 深度学习方法的使用帮助解决了以上问题,由于深度学习方法的黑盒特性,使得人们无法解释为什么该方法可以让AD分类能有很好的精度,也不知道到底是哪些脑区与疾病的诊断有重要的联系。

贡献

  • 提出了基于注意力机制的3D网络且达到了很好的分类效果,免除了手动提取特征复杂步骤。
  • 通过引入注意力机制来找到那些与疾病诊断有重要联系的脑区并探索潜在的生物标志物。
  • 提出的网络通过结合注意力机制达到了较好的分类效果的同时并没有增加计算量。提出的这个注意力模块也可灵活地嵌入到其他地网络中使用。

实验

模型搭建

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值