文章目录
论文:《Attention-based 3D Convolutional Network for Alzheimer’s Disease Diagnosis and Biomarkers Exploraion》
摘要
虽然深度学习在医学影像数据的疾病分类上已经有了很大的发展,但人们还是不知道该如何解释卷积神经网络是如何做出分类的。作者认为应重视神经网络在训练过程中的注意力并提供与疾病相关联的那些脑区能够很好地帮助提高分类效果。于是该文就提出了一个attention-based 3D ResNet模型来诊断AD并且探索潜在的生物标志物。
背景
- 过去的数十年里,有很多研究人员使用传统的机器学习方法来对医学图像进行分类研究,但这些方法需要前期复杂的数据处理工作,如手动提取特征,降维等处理。
- 深度学习方法的使用帮助解决了以上问题,由于深度学习方法的黑盒特性,使得人们无法解释为什么该方法可以让AD分类能有很好的精度,也不知道到底是哪些脑区与疾病的诊断有重要的联系。
贡献
- 提出了基于注意力机制的3D网络且达到了很好的分类效果,免除了手动提取特征复杂步骤。
- 通过引入注意力机制来找到那些与疾病诊断有重要联系的脑区并探索潜在的生物标志物。
- 提出的网络通过结合注意力机制达到了较好的分类效果的同时并没有增加计算量。提出的这个注意力模块也可灵活地嵌入到其他地网络中使用。