书上说了,天下没有不散的宴席,但你别怕,书上还说了,人生何处不相逢。
【纯手工】优质讲解,码字不易,写作不易,走过路过,大家点个赞呗!
🎯作者主页: 追光者♂🔥
🌸个人简介:
💖[1] 计算机专业硕士研究生💖
🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿
🌟[3] 2022年度博客之星人工智能领域TOP4🌟
🏅[4] 阿里云社区特邀专家博主🏅
🏆[5] CSDN-人工智能领域优质创作者🏆
📝[6] 预期2023年10月份 · 准CSDN博客专家📝
- 无限进步,一起追光!!!
🍎感谢大家 点赞👍 收藏⭐ 留言📝!!!
🌿本篇,我们深入分析和学习RGCN的原理以及为何要这么做。首先让我们来回顾对于图神经网络问题的三大处理步骤,可以说,这是该深度学习模型的基本理解,后续都是在深化其中的细节处理。然后以容易理解的方式,引出异质图卷积网络RGCN的由来,主要讲解其核心公式和论文中作者所提出的两种降低模型参数量/优化的处理办法,并给出基础分解以及块对角分解的核心实现代码讲解。最后附上RGCN源代码及说明。
关于GCN,我在之前的文章中已经做了不止一次的详解,大家可以根据关键字在我主页检索学习。