详解【异质图卷积网络 RGCN】回顾:图神经网络问题的三大处理步骤 | 从起源说起,RGCN核心公式解释,两种降低模型参数量/优化的方式,附核心代码实现讲解

本文深入分析RGCN原理,探讨处理异质图时的问题,介绍核心公式和两种优化模型参数量的方法:基础分解和块对角分解,并附带代码实现讲解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 
书上说了,天下没有不散的宴席,但你别怕,书上还说了,人生何处不相逢。

 

【纯手工】优质讲解,码字不易,写作不易,走过路过,大家点个赞呗!

在这里插入图片描述

 

🎯作者主页: 追光者♂🔥

        

🌸个人简介:
 
💖[1] 计算机专业硕士研究生💖
 
🌿[2] 2023年城市之星领跑者TOP1(哈尔滨)🌿
 
🌟[3] 2022年度博客之星人工智能领域TOP4🌟
 
🏅[4] 阿里云社区特邀专家博主🏅
 
🏆[5] CSDN-人工智能领域优质创作者🏆
 
📝[6] 预期2023年10月份 · 准CSDN博客专家📝  
 

  • 无限进步,一起追光!!!

        

🍎感谢大家 点赞👍  收藏⭐   留言📝!!!

        

🌿本篇,我们深入分析和学习RGCN的原理以及为何要这么做。首先让我们来回顾对于图神经网络问题的三大处理步骤,可以说,这是该深度学习模型的基本理解,后续都是在深化其中的细节处理。然后以容易理解的方式,引出异质图卷积网络RGCN的由来,主要讲解其核心公式和论文中作者所提出的两种降低模型参数量/优化的处理办法,并给出基础分解以及块对角分解的核心实现代码讲解。最后附上RGCN源代码及说明。


关于GCN,我在之前的文章中已经做了不止一次的详解,大家可以根据关键字在我主页检索学习。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追光者♂

谢谢你呀!一起加油!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值