数值分析笔记(四)

  • 一、数值积分相关概念:
概念释义性质
机械求积若选取 [ a , b ] [a,b] [a,b]上若干点 x k x_k xk,然后用 f ( x k ) f(x_k) f(xk)加权求和得到积分 ∫ a b f ( x ) d x = ∑ k = 0 n a k f ( x k ) \int_a^bf(x)dx = \sum_{k=0}^na_kf(x_k) abf(x)dx=k=0nakf(xk),而系数 a k a_k ak只和点的选取有关而不依赖于函数的具体形式,则称这类数值积分方法为机械求积,其中 x k x_k xk求积节点 a k a_k ak求积系数 / 权
代数精度如果某个数值积分公式对于次数不超过n的多项式均能准确地成立,但对于n+1次多项式就不能精确成立,则称该求积公式具有n次代数精度
p阶收敛若求积公式 I n I_n In(步长为h),满足 lim ⁡ h → 0 I − I n h p = C \lim_{h\rightarrow 0}\cfrac{I-I_n}{h^p} = C limh0hpIIn=C,则称该求积公式p阶收敛

  • 二、 N e w t o n − C o t e s Newton-Cotes NewtonCotes公式:

设将积分区间 [ a , b ] [a,b] [a,b]划分为n等份,步长 h = b − a n h = \frac{b-a}{n} h=nba,选取等距节点 x k = a + k h x_k = a+kh xk=a+kh
则可得到插值型求积公式:

I n = ( b − a ) ∑ k = 0 n C k ( n ) f ( x k ) I_n = (b-a)\sum_{k=0}^nC_k^{(n)}f(x_k) In=(ba)k=0nCk(n)f(xk)

其中 C k ( n ) = ( − 1 ) n − k n k ! ( n − k ) ! ∫ 0 n ∏ j = 0 且 j ≠ k n ( x − j ) d x C_k^{(n)} = \cfrac{(-1)^{n-k}}{nk!(n-k)!}\int_{0}^n \prod_{j=0且j \ne k}^n(x-j)dx Ck(n)=nk!(nk)!(1)nk0nj=0j=kn(xj)dx C o t e s Cotes Cotes系数

=> 当 n = 2 m n = 2m n=2m时, N e w t o n − C o t e s Newton-Cotes NewtonCotes公式具有 n + 1 n+1 n+1阶代数精度

=> 当 n = 2 m + 1 n = 2m+1 n=2m+1时, N e w t o n − C o t e s Newton-Cotes NewtonCotes公式具有 n n n阶代数精度

=> 当 n = 1 n = 1 n=1时, C 0 ( 1 ) = C 1 ( 1 ) = 1 2 C_0^{(1)} = C_1^{(1)} = \frac{1}{2} C0(1)=C1(1)=21 I 1 = T = b − a 2 [ f ( a ) + f ( b ) ] I_1 = T = \frac{b-a}{2}[f(a)+f(b)] I1=T=2ba[f(a)+f(b)] (梯形公式)

其余项 R T = − b − a 12 ( b − a ) 2 f ′ ′ ( ξ ) R_T = - \frac{b-a}{12}(b-a)^2f''(\xi) RT=12ba(ba)2f(ξ)

=> 当 n = 2 n = 2 n=2时, C 0 ( 2 ) = 1 6 , C 1 ( 2 ) = 2 3 , C 2 ( 2 ) = 1 6 C_0^{(2)} = \frac{1}{6}, C_1^{(2)} = \frac{2}{3},C_2^{(2)} = \frac{1}{6} C0(2)=61C1(2)=32C2(2)=61 I 2 = S = b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] I_2 = S = \frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] I2=S=6ba[f(a)+4f(2a+b)+f(b)] ( S i m p s o n Simpson Simpson公式)

其余项 R S = − b − a 180 ( b − a 2 ) 4 f ( 4 ) ( ξ ) R_S = - \frac{b-a}{180}(\frac{b-a}{2})^4f^{(4)}(\xi) RS=180ba(2ba)4f(4)(ξ)

=> 当 n = 4 n = 4 n=4时, I 4 = C = b − a 90 [ 7 f ( a ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( b ) ] I_4 = C = \frac{b-a}{90}[7f(a)+32f(x_1)+12f(x_2)+32f(x_3)+7f(b)] I4=C=90ba[7f(a)+32f(x1)+12f(x2)+32f(x3)+7f(b)] ( C o t e s Cotes Cotes公式)

其余项 R C = − 2 ( b − a ) 945 ( b − a 4 ) 6 f ( 6 ) ( ξ ) R_C = - \frac{2(b-a)}{945}(\frac{b-a}{4})^6f^{(6)}(\xi) RC=9452(ba)(4ba)6f(6)(ξ)

=> 当 n ≥ 8 n\ge 8 n8时, C o t e s Cotes Cotes系数有正有负,不够稳定,故通常不采用高阶的 N e w t o n − C o t e s Newton-Cotes NewtonCotes公式


  • 三、复化求积法:

(设将积分区间 [ a , b ] [a,b] [a,b]划分为n等份,步长 h = b − a n h = \frac{b-a}{n} h=nba,选取等距节点 x k = a + k h x_k = a+kh xk=a+kh,先用低阶的 N e w t o n − C o t e s Newton-Cotes NewtonCotes公式求得每个子区间 [ x k , x k + 1 ] [x_k,x_{k+1}] [xk,xk+1]的积分值 I k I_k Ik,然后求和,用 ∑ k = 0 n − 1 I k \sum_{k=0}^{n-1}I_k k=0n1Ik作为 I I I的近似值)

=> 复化梯形公式: T n = h 2 [ f ( a ) + f ( b ) + 2 ∑ k = 1 n − 1 f ( x k ) ] T_n = \frac{h}{2}[f(a)+f(b)+2\sum_{k=1}^{n-1}f(x_k)] Tn=2h[f(a)+f(b)+2k=1n1f(xk)]

其余项 R T n = − b − a 12 h 2 f ′ ′ ( ξ ) = 1 n 2 R T R_{T_n} = - \frac{b-a}{12}h^2f''(\xi) = \frac{1}{n^2}R_T RTn=12bah2f(ξ)=n21RT

=> 复化 S i m p s o n Simpson Simpson公式: S n = h 6 [ f ( a ) + 4 ∑ k = 0 n − 1 f ( x k + 1 2 ) + f ( b ) + 2 ∑ k = 1 n − 1 f ( x k ) ] S_n = \frac{h}{6}[f(a)+4\sum_{k=0}^{n-1}f(x_{k+\frac{1}{2}})+f(b)+2\sum_{k=1}^{n-1}f(x_k)] Sn=6h[f(a)+4k=0n1f(xk+21)+f(b)+2k=1n1f(xk)]

其余项 R S n = − b − a 180 ( h 2 ) 4 f ( 4 ) ( ξ ) = 1 n 4 R S R_{S_n} = - \frac{b-a}{180}(\frac{h}{2})^4f^{(4)}(\xi) = \frac{1}{n^4}R_S RSn=180ba(2h)4f(4)(ξ)=n41RS

=> 复化 C o t e s Cotes Cotes公式: C n = h 90 [ 7 f ( a ) + 32 ∑ k = 0 n − 1 f ( x k + 1 4 ) + 12 ∑ k = 0 n − 1 f ( x k + 1 2 ) + 32 ∑ k = 0 n − 1 f ( x k + 3 4 ) + 7 f ( b ) + 14 ∑ k = 1 n − 1 f ( x k ) ] C_n = \frac{h}{90}[7f(a)+32\sum_{k=0}^{n-1}f(x_{k+\frac{1}{4}})+12\sum_{k=0}^{n-1}f(x_{k+\frac{1}{2}})+32\sum_{k=0}^{n-1}f(x_{k+\frac{3}{4}})+7f(b)+14\sum_{k=1}^{n-1}f(x_k)] Cn=90h[7f(a)+32k=0n1f(xk+41)+12k=0n1f(xk+21)+32k=0n1f(xk+43)+7f(b)+14k=1n1f(xk)]

其余项 R C n = − 2 ( b − a ) 945 ( h 4 ) 6 f ( 6 ) ( ξ ) = 1 n 6 R C R_{C_n} = - \frac{2(b-a)}{945}(\frac{h}{4})^6f^{(6)}(\xi)= \frac{1}{n^6}R_C RCn=9452(ba)(4h)6f(6)(ξ)=n61RC


  • 四、 R o m b e r g Romberg Romberg公式 / R i c h a r d s o n Richardson Richardson外推加速法:

① 梯形公式构造 S i m p s o n Simpson Simpson公式: S n = 4 3 T 2 n − 1 3 T n S_n = \frac{4}{3}T_{2n}-\frac{1}{3}T_{n} Sn=34T2n31Tn

S i m p s o n Simpson Simpson公式构造 C o t e s Cotes Cotes公式: C n = 16 15 S 2 n − 1 15 S n C_n = \frac{16}{15}S_{2n}-\frac{1}{15}S_{n} Cn=1516S2n151Sn

C o t e s Cotes Cotes公式构造 R o m b e r g Romberg Romberg公式: R n = 64 63 C 2 n − 1 64 C n R_n = \frac{64}{63}C_{2n}-\frac{1}{64}C_{n} Rn=6364C2n641Cn

=> R i c h a r d s o n Richardson Richardson外推加速法:

{ T k 0 } \{T^{0}_{k}\} {Tk0}表示将区间 [ a , b ] [a,b] [a,b]二分k次后得到的梯形值序列
且以 { T k m } \{T^{m}_{k}\} {Tkm}表示经过m次加速后的将区间 [ a , b ] [a,b] [a,b]二分k次后得到积分值序列,则有以下递推公式:

T k m = 4 m 4 m − 1 T k + 1 m − 1 − 1 4 m T k m − 1 T^m_{k} = \frac{4^m}{4^m-1}T^{m-1}_{k+1}-\frac{1}{4^{m}}T^{m-1}_{k} Tkm=4m14mTk+1m14m1Tkm1


  • 五、 G a u s s − L e g e n d r e Gauss-Legendre GaussLegendre公式:

设积分区间为 [ − 1 , 1 ] [-1,1] [1,1],则有 G a u s s − L e g e n d r e Gauss-Legendre GaussLegendre公式:

∫ − 1 1 f ( x ) d x = ∑ k = 0 n a k f ( x k ) \int_{-1}^1 f(x)dx = \sum_{k=0}^na_kf(x_k) 11f(x)dx=k=0nakf(xk)

其中使得求积公式具有2n+1次代数精度的序列 { x k } \{x_k\} {xk}称为 G a u s s Gauss Gauss,而该区间上的 G a u s s Gauss Gauss点即是 L e g e n d r e Legendre Legendre多项式 P n + 1 ( x ) P_{n+1}(x) Pn+1(x)的零点

求得 { x k } \{x_k\} {xk}后,系数只需要再满足机械求积公式具有 n n n次代数精度的一般条件

D n + 1 × ( a 0 , a 1 , . . . , a n ) T = [ b − a , 1 2 ( b 2 − a 2 ) , . . . , 1 n + 1 ( b n + 1 − a n + 1 ) ] T D_{n+1} \times (a_0,a_1,...,a_n)^T = [b-a,\frac{1}{2}(b^2-a^2),...,\frac{1}{n+1}(b^{n+1}-a^{n+1})]^T Dn+1×(a0,a1,...,an)T=[ba,21(b2a2),...,n+11(bn+1an+1)]T

其中: D n + 1 D_{n+1} Dn+1 { x k } \{x_k\} {xk}构造的n+1阶 V a n d e r m o n d e Vandermonde Vandermonde行列式对应的矩阵, 此处令 b = 1 , a = − 1 b=1,a=-1 b=1,a=1

=> 对于一般积分区间 [ a , b ] [a,b] [a,b],只需要作变换: x = b − a 2 t + b + a 2 ( t ∈ [ − 1 , 1 ] ) x = \frac{b-a}{2}t+\frac{b+a}{2}(t\in[-1,1]) x=2bat+2b+a(t[1,1]),此时: ∫ a b f ( x ) d x = b − a 2 ∫ − 1 1 f ( b − a 2 t + b + a 2 ) d t \int_a^b f(x)dx = \frac{b-a}{2} \int_{-1}^1f(\frac{b-a}{2}t+\frac{b+a}{2})dt abf(x)dx=2ba11f(2bat+2b+a)dt

=> 两点 G a u s s − L e g e n d r e Gauss-Legendre GaussLegendre公式: ∫ − 1 1 f ( x ) d x = f ( − 1 3 ) + f ( 1 3 ) \int_{-1}^1 f(x)dx = f(\frac{-1}{\sqrt 3})+f(\frac{1}{\sqrt 3}) 11f(x)dx=f(3 1)+f(3 1)

=> 三点 G a u s s − L e g e n d r e Gauss-Legendre GaussLegendre公式: ∫ − 1 1 f ( x ) d x = 5 9 f ( − 15 5 ) + 8 9 f ( 0 ) + 5 9 f ( 15 5 ) \int_{-1}^1 f(x)dx = \frac{5}{9}f(\frac{-\sqrt{15}}{5})+\frac{8}{9}f(0)+ \frac{5}{9}f(\frac{\sqrt{15}}{5}) 11f(x)dx=95f(515 )+98f(0)+95f(515 )

=> 积分余项: R ( x ) = f ( 2 n + 2 ) ( 2 n + 2 ) ! ∫ a b ω 2 ( x ) d x R(x) = \cfrac{f^{(2n+2)}}{(2n+2)!}\int_a^b\omega^2(x)dx R(x)=(2n+2)!f(2n+2)abω2(x)dx,其中 ω ( x ) = ∏ i = 0 n ( x − x i ) \omega(x) = \prod_{i=0}^n(x-x_i) ω(x)=i=0n(xxi)

=> 对于带权 ρ ( x ) = 1 1 − x 2 \rho(x) = \frac{1}{\sqrt{1-x^2}} ρ(x)=1x2 1的积分 ∫ − 1 1 ρ ( x ) f ( x ) d x = ∑ k = 0 n a k f ( x k ) \int_{-1}^1 \rho(x)f(x)dx = \sum_{k=0}^na_kf(x_k) 11ρ(x)f(x)dx=k=0nakf(xk),所选取的 G a u s s Gauss Gauss即为 C h e b y s h e v Chebyshev Chebyshev多项式 T n + 1 ( x ) T_{n+1}(x) Tn+1(x)的零点,系数的求解同理


  • 六、数值微分常用方法:

(已知一系列的观测点 ( x i , y i ) (x_i,y_i) (xi,yi),在给定步长 h h h的情况下,求出观测点处的导数的近似值)

(1)中点公式:
f ′ ( a ) = G ( h ) = f ( a + h ) − f ( a − h ) 2 h f'(a) = G(h) = \cfrac{f(a+h)-f(a-h)}{2h} f(a)=G(h)=2hf(a+h)f(ah), h为待求导点 a a a的邻域的半径

(2)两点公式:
f ′ ( x 0 ) = 1 h [ f ( x 1 ) − f ( x 0 ) ] f'(x_0) = \frac{1}{h}[f(x_1)-f(x_0)] f(x0)=h1[f(x1)f(x0)], 余项: R ( x 0 ) = h 2 f ′ ′ ( ξ ) R(x_0) = \frac{h}{2}f''(\xi) R(x0)=2hf(ξ)
f ′ ( x 1 ) = 1 h [ f ( x 1 ) − f ( x 0 ) ] f'(x_1) = \frac{1}{h}[f(x_1)-f(x_0)] f(x1)=h1[f(x1)f(x0)], 余项: R ( x 1 ) = − h 2 f ′ ′ ( ξ ) R(x_1) = -\frac{h}{2}f''(\xi) R(x1)=2hf(ξ)
其中: h = x 1 − x 0 h = x_1-x_0 h=x1x0

(3)三点公式:
f ′ ( x 0 ) = 1 2 h [ − 3 f ( x 0 ) + 4 f ( x 1 ) − f ( x 2 ) ] f'(x_0) = \frac{1}{2h}[-3f(x_0)+4f(x_1)-f(x_2)] f(x0)=2h1[3f(x0)+4f(x1)f(x2)], 余项: R ( x 0 ) = − h 2 3 f ′ ′ ′ ( ξ ) R(x_0) = -\frac{h^2}{3}f'''(\xi) R(x0)=3h2f(ξ)
f ′ ( x 1 ) = 1 2 h [ f ( x 2 ) − f ( x 0 ) ] f'(x_1) = \frac{1}{2h}[f(x_2)-f(x_0)] f(x1)=2h1[f(x2)f(x0)], 余项: R ( x 1 ) = h 2 6 f ′ ′ ( ξ ) R(x_1) = \frac{h^2}{6}f''(\xi) R(x1)=6h2f(ξ)
f ′ ( x 2 ) = 1 2 h [ f ( x 0 ) − 4 f ( x 1 ) + 3 f ( x 2 ) ] f'(x_2) = \frac{1}{2h}[f(x_0)-4f(x_1)+3f(x_2)] f(x2)=2h1[f(x0)4f(x1)+3f(x2)], 余项: R ( x 0 ) = − h 2 3 f ′ ′ ′ ( ξ ) R(x_0) = -\frac{h^2}{3}f'''(\xi) R(x0)=3h2f(ξ)
其中: h = x 2 − x 1 = x 1 − x 0 h = x_2-x_1 = x_1-x_0 h=x2x1=x1x0

(4)五点公式:
f ′ ( x 0 ) = 1 12 h [ − 25 f ( x 0 ) + 48 f ( x 1 ) − 36 f ( x 2 ) + 16 f ( x 3 ) − 3 f ( x 4 ) ] f'(x_0) = \frac{1}{12h}[-25f(x_0)+48f(x_1)-36f(x_2)+16f(x_3)-3f(x_4)] f(x0)=12h1[25f(x0)+48f(x1)36f(x2)+16f(x3)3f(x4)]
f ′ ( x 1 ) = 1 12 h [ − 3 f ( x 0 ) − 10 f ( x 1 ) + 18 f ( x 2 ) − 6 f ( x 3 ) + f ( x 4 ) ] f'(x_1) = \frac{1}{12h}[-3f(x_0)-10f(x_1)+18f(x_2)-6f(x_3)+f(x_4)] f(x1)=12h1[3f(x0)10f(x1)+18f(x2)6f(x3)+f(x4)]
f ′ ( x 2 ) = 1 12 h [ f ( x 0 ) − 8 f ( x 1 ) + 8 f ( x 3 ) − f ( x 4 ) ] f'(x_2) = \frac{1}{12h}[f(x_0)-8f(x_1)+8f(x_3)-f(x_4)] f(x2)=12h1[f(x0)8f(x1)+8f(x3)f(x4)]
f ′ ( x 3 ) = 1 12 h [ − f ( x 0 ) + 6 f ( x 1 ) − 18 f ( x 2 ) + 10 f ( x 3 ) + 3 f ( x 4 ) ] f'(x_3) = \frac{1}{12h}[-f(x_0)+6f(x_1)-18f(x_2)+10f(x_3)+3f(x_4)] f(x3)=12h1[f(x0)+6f(x1)18f(x2)+10f(x3)+3f(x4)]
f ′ ( x 4 ) = 1 12 h [ 3 f ( x 0 ) − 16 f ( x 1 ) + 36 f ( x 2 ) − 48 f ( x 3 ) + 25 f ( x 4 ) ] f'(x_4) = \frac{1}{12h}[3f(x_0)-16f(x_1)+36f(x_2)-48f(x_3)+25f(x_4)] f(x4)=12h1[3f(x0)16f(x1)+36f(x2)48f(x3)+25f(x4)]
其中: h = x 4 − x 3 = x 3 − x 2 = x 2 − x 1 = x 1 − x 0 h =x_4-x_3 = x_3-x_2 = x_2-x_1 = x_1-x_0 h=x4x3=x3x2=x2x1=x1x0



  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值