数值微分(变步长的中点方法和三点求导公式)

该博客探讨了使用变步长的中点方法和三点求导公式计算exe^xex在x=1处导数值的过程。通过对比不同步长(1, 0.1, 0.01)下的迭代次数,发现步长越小,收敛速度越快。例如,步长为1时在第九次迭代才收敛,而0.01时在第二次就接近真实值。这展示了数值方法中步长选择对精度和计算效率的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用变步长的中点方法和三点求导公式求 e x e^x ex在x=1初的导数值,并比较步长的变化对解的影响在这里插入图片描述

function T = var_size(fname,h)
format long
k=10;
for i=0:k
   m=h/(2^i);
   T=feval(fname,m);
   disp([i,T])
end
fname=inline('(exp(1+x)-exp(1-x))/(2*x)');
h0=1;
h1=0.1;
h2=0.01;
var_size(fname,h0)
var_size(fname,h1)
var_size(fname,h2)

均取小数点后五位,当h=1时,结果在第九次迭代时才收敛;而当h=0.1时,结果在第五次迭代时收敛;当h=0.01时,在第二次就开始接近真实值。由此可见,h越小,收敛速度越快。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值