用变步长的中点方法和三点求导公式求
e
x
e^x
ex在x=1初的导数值,并比较步长的变化对解的影响
function T = var_size(fname,h)
format long
k=10;
for i=0:k
m=h/(2^i);
T=feval(fname,m);
disp([i,T])
end
fname=inline('(exp(1+x)-exp(1-x))/(2*x)');
h0=1;
h1=0.1;
h2=0.01;
var_size(fname,h0)
var_size(fname,h1)
var_size(fname,h2)
均取小数点后五位,当h=1时,结果在第九次迭代时才收敛;而当h=0.1时,结果在第五次迭代时收敛;当h=0.01时,在第二次就开始接近真实值。由此可见,h越小,收敛速度越快。