DenseNet重点介绍和源码分享

1 背景

1.1 引入原因

研究表明,非常深的ResNet中,越往后,其层数的增加对效果的提升越少,因此超深ResNet中的层数可以随机丢掉,类似于循环神经网络。因此DenseNet基于这一特性,不在盲目的增加网络层数,而是参考ResNet出现的问题,ResNet将每一个模块的输出和原始输入数据相加作为最后的输出,而DenseNet是将每一个模块中,每一个卷积层的输入都是来自其之前所有卷积层的输出,而其输出也是都传递给它之后的每一个卷积层作为输入。
同时,这里将多个结果作为输入并不是进行简单的相加,而是在通道上进行链接,这也缩短了每一层的参数和Loss函数的距离,增加了模型的训练速度,减少了梯度问题,这也是该模型的一大优势。

1.2 主要工作

  1. 数据集使用的是CIFAR、SVHN和ImageNet
  2. 对比的模型主要是ResNet变体和不同层数的DenseNet
    结果:
    在这里插入图片描述
    先看表格注释在看表格数据

结论:

  1. 在当时,DenseNet在三个数据集上的错误率是最低的,达到了模型的目的;
  2. 可以很明确的看到,相同深度的DenseNet,数据增强会拉低模型效果,可见数据增强不一定都好使;
  3. 这个文章出来,作者自己跑的模型结果是带*号的,做的东西还是很多的,在横向上是用了不同的数据集进行对比,在纵向上,使用的是不同的模型进行对比,结果都是最优的,这个不就是我们发论文最想要看的结果么!

文章之后就是和ResNet在ImageNet数据集上的结果对比,效果也是很明显的!

附上别人已经解析透透的模型blog了,DenseNet是2017年顶会的oral,别人2017年就开始了解这个了,我2017年还在上高中啊,技术还是得多关注新的啊!

2 源码分享

2.1 手搓DenseNet

class _DenseLayer(nn.Sequential):    # 实现其中的DenseBlock的网络层基础
    """Basic unit of DenseBlock (using bottleneck layer) """
    def __init__(self, num_input_features, growth_rate, bn_size, drop_rate):
        super(_DenseLayer, self).__init__()
        self.add_module("norm1", nn.BatchNorm2d(num_input_features))
        self.add_module("relu1", nn.ReLU(inplace=True))
        self.add_module("conv1", nn.Conv2d(num_input_features, bn_size*growth_rate,
                                           kernel_size=1, stride=1, bias=False))
        self.add_module("norm2", nn.BatchNorm2d(bn_size*growth_rate))
        self.add_module("relu2", nn.ReLU(inplace=True))
        self.add_module("conv2", nn.Conv2d(bn_size*growth_rate, growth_rate,
                                           kernel_size=3, stride=1, padding=1, bias=False))
        self.drop_rate = drop_rate

    def forward(self, x):
        new_features = super(_DenseLayer, self).forward(x)
        if self.drop_rate > 0:
            new_features = F.dropout(new_features, p=self.drop_rate)
        # 在通道维上将输入和输出连结
        return torch.cat([x, new_features], 1)

class _DenseBlock(nn.Sequential):   # 通过遍历方法,实现DenseBlock中的密集连接操作
    """DenseBlock"""
    def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
        super(_DenseBlock, self).__init__()
        for i in range(num_layers):
            layer = _DenseLayer(num_input_features+i*growth_rate, growth_rate, bn_size,
                                drop_rate)
            self.add_module("denselayer%d" % (i+1), layer)

class _Transition(nn.Sequential):   # 实现Transition层,用来跟在DenseBlock后减少空间维度,降低参数量
    """Transition layer between two adjacent DenseBlock"""
    def __init__(self, num_input_feature, num_output_features):
        super(_Transition, self).__init__()
        self.add_module("norm", nn.BatchNorm2d(num_input_feature))
        self.add_module("relu", nn.ReLU(inplace=True))
        self.add_module("conv", nn.Conv2d(num_input_feature, num_output_features,
                                          kernel_size=1, stride=1, bias=False))
        self.add_module("pool", nn.AvgPool2d(2, stride=2))


class DenseNet(nn.Module):   # 实现DenseNet
    "DenseNet-BC model"
    def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64,
                 bn_size=4, compression_rate=0.5, drop_rate=0, num_classes=1000):
        """        
        :param growth_rate: 增长率,即K=32
        :param block_config: 每一个DenseBlock的layers数量,这里实现的是DenseNet-121
        :param num_init_features: 第一个卷积的通道数一般为2*K=64
        :param bn_size: bottleneck中1*1conv的factor=4,1*1conv输出的通道数一般为factor*K=128
        :param compression_rate: 压缩因子
        :param drop_rate: dropout层将神经元置0的概率,为0时表示不使用dropout层
        :param num_classes: 分类数
        """
        super(DenseNet, self).__init__()
        # first Conv2d
        self.features = nn.Sequential(OrderedDict([
            ("conv0", nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)),
            ("norm0", nn.BatchNorm2d(num_init_features)),
            ("relu0", nn.ReLU(inplace=True)),
            ("pool0", nn.MaxPool2d(3, stride=2, padding=1))
        ]))

        # DenseBlock
        num_features = num_init_features
        for i, num_layers in enumerate(block_config):
            block = _DenseBlock(num_layers, num_features, bn_size, growth_rate, drop_rate)
            self.features.add_module("denseblock%d" % (i + 1), block)
            num_features += num_layers*growth_rate
            if i != len(block_config) - 1:
                transition = _Transition(num_features, int(num_features*compression_rate))
                self.features.add_module("transition%d" % (i + 1), transition)
                num_features = int(num_features * compression_rate)

        # final bn+ReLU
        self.features.add_module("norm5", nn.BatchNorm2d(num_features))
        self.features.add_module("relu5", nn.ReLU(inplace=True))

        # classification layer
        self.classifier = nn.Linear(num_features, num_classes)

        # params initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1)
            elif isinstance(m, nn.Linear):
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        features = self.features(x)
        out = F.avg_pool2d(features, 7, stride=1).view(features.size(0), -1)
        out = self.classifier(out)
        return out

DenseNet
这个是代码原出处!

2.2 正确使用方法

加载torchviosn.models中的DenseNet模型,可用的如下:
在这里插入图片描述
除了DenseNet不行,其他几个都可以,

2.2.1使用densenet121进行的分类模型:
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms, models

from torchvision.utils import make_grid

from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report

# 前期准备工作    以下仅供参考
train_transforms = transforms.Compose([   
    transforms.RandomRotation(10),    #  Rotation (-10,109)
    transforms.RandomHorizontalFlip(),   # HorizontalFlip by 0.5 ratio
    transforms.Resize(227),
    transforms.CenterCrop(227),
    transforms.ToTensor(),
    transforms.Normalize([0.485,0.456,0.406],   # Three channesl by data-mean/std    (mean, std)
                        [0.229,0.224,0.225])
])

# 第一步,传入类别文件夹的父文件夹,以及需要做的数据变换
dataset = datasets.ImageFolder(root="../input/medical-mnist", transform=train_transforms)   

# 第二步 设置训练集和测试集的占比 
train_indices, test_indices = train_test_split(list(range(len(dataset.targets))), train_size=0.8, test_size=0.2, stratify=dataset.target_transform) 

# 第三步 传入全部数据集 以及索引,得到数据处理后的最终结果
train_dataset = torch.utils.data.Subset(dataset, train_indices)  # 形成训练集
test_dataset = torch.utils.data.Subset(dataset, test_indices)   # 形成测试集

# 第四步 使用数据加载器进行数据加载,得到可以传入模型的数据集
train_loader = DataLoader(train_dataset, batch_size=12, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=12)

from torchvision.models import DenseNet, densenet121
import torch.nn as nn
class Net(nn.Module):
    def __init__(self, NUMCLASS, pretrain=False):
        super(Net, self).__init__()
        self.fc = densenet121(pretrain)
        self.fc.classifier = nn.Linear(1024, NUMCLASS)
    
    def forward(self, x):
        y = self.fc(x)
        return y
        
# def count_parameters(model):
#     params = [p.numel() for p in model.parameters() if p.requires_grad]
# #     for item in params:
# #         print(f'{item:>8}')
#     print(f'________\n{sum(params):>8}')
# count_parameters(net)

# Parameters
NUM_CLASSES = 6
EPOCH = 150
LR = 0.001

# Initializtion

device  = torch.device("cuda" if torch.cuda.is_available() else "cpu")

net = Net(NUM_CLASSES, True).to(device)

criterion = nn.CrossEntropyLoss().to(device)

optimizer = torch.optim.Adam(net.parameters(), lr=LR)

lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)

import time
start_time = time.time()
train_losses = []
test_losses = []
train_acc = []
test_acc = []
for i in range(EPOCH):
    start_time = time.time()
    total_train_loss = 0
    total_train_acc = 0
    for idx, (x_train, y_train) in enumerate(train_loader):
        x_train, y_train = x_train.to(device), y_train.to(device)
        y_pred = net(x_train)
        
        loss = criterion(y_pred, y_train)
        total_train_loss += loss.item()
        acc = (y_pred.argmax(1) == y_train).sum()
        total_train_acc += acc
        optimizer.zero_grad()
        
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        
    train_losses.append(total_train_loss)
    train_acc.append(total_train_acc/len(train_dataset))
    
    total_test_loss = total_test_acc = 0
    with torch.no_grad():
        for idx, (x_test, y_test) in enumerate(test_loader):
            x_test, y_test = x_test.to(device), y_test.to(device)
            
            y_pred = net(x_test)
            loss = criterion(y_pred, y_test)
            total_test_loss += loss.item()
            
            acc = (y_pred.argmax(1) == y_test).sum()
            total_test_acc += acc
            
        test_losses.append(total_test_loss)
        test_acc.append(total_test_acc/len(test_dataset))
    end_time = time.time()
    print(f"{i+1}/{EPOCH}, time:{end_time-start_time} \t train_loss:{total_train_loss}\t train_acc:{total_train_acc/len(train_dataset)}\t test_loss:{total_test_loss} \t test_acc:{total_test_acc/len(test_dataset)}") 

部分结果:
在这里插入图片描述

一轮10分钟,出道即巅峰!

2.2.2 使用densenet121进行的分割模型:

以前不太懂BackBone的作用,后来在一篇分割模型中,看到了使用DenseNet作为特征提取器,作为UNet的Encoder部分,效果还是不错的,以下给出参考用法:

1.查看DenseNet的网络结构:
在这里插入图片描述
2. 选择需要的模块:
在这里插入图片描述
传入自己的数据,看看每一个模块的输出大小和通道维数!!
3.进行模型组装和改进:
4. 给出该经典模型的Backbone结构

在这里插入图片描述
附上官方源码:
DenseNet

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值