分割大模型论文阅读——Medical SAM Adapter Adapting Segment Anything Model for Medical Image Segmentation

本文提出医学 SAM 适配器 (Med-SA),通过空间深度转置 (SD-Trans) 和超提示适配器 (HyP-Adpt) 实现2D到3D医学图像分割的参数高效微调。实验表明,Med-SA 在17个医学图像分割任务上超越SOTA方法,仅更新2%的参数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

期刊分析

期刊名: arXiv
代码: https://github.com/KidsWithTokens/Medical-SAM-Adapter
在这里插入图片描述

摘要

Segment Anything Model (SAM) 最近在图像分割领域广受欢迎,因为它在各种分割任务中具有令人印象深刻的功能及其基于提示的界面。然而,最近的研究和个别实验表明,由于缺乏医学专业知识,SAM 在医学图像分割方面表现不佳。这就提出了如何增强 SAM 对医学图像的分割能力的问题。在本文中,我们没有对 SAM 模型进行微调,而是提出了医学 SAM 适配器 (Med-SA),它使用轻量而有效的适应技术将特定领域的医学知识融入到分割模型中。在 Med-SA 中,我们提出了空间深度转置 (SD-Trans) 来使 2D SAM 适应 3D 医学图像,并提出超提示适配器 (HyP-Adpt) 来实现提示条件适应。我们对跨各种图像模态的 17 个医学图像分割任

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值