Medical SAM Adapter Adapting Segment Anything Model for Medical Image Segmentation
期刊分析
期刊名:
arXiv
代码:
https://github.com/KidsWithTokens/Medical-SAM-Adapter
摘要
Segment Anything Model (SAM) 最近在图像分割领域广受欢迎,因为它在各种分割任务中具有令人印象深刻的功能及其基于提示的界面。然而,最近的研究和个别实验表明,由于缺乏医学专业知识,SAM 在医学图像分割方面表现不佳。这就提出了如何增强 SAM 对医学图像的分割能力的问题。在本文中,我们没有对 SAM 模型进行微调,而是提出了医学 SAM 适配器 (Med-SA),它使用轻量而有效的适应技术将特定领域的医学知识融入到分割模型中。在 Med-SA 中,我们提出了空间深度转置 (SD-Trans) 来使 2D SAM 适应 3D 医学图像,并提出超提示适配器 (HyP-Adpt) 来实现提示条件适应。我们对跨各种图像模态的 17 个医学图像分割任