分割大模型论文阅读——Medical SAM Adapter Adapting Segment Anything Model for Medical Image Segmentation

本文提出医学 SAM 适配器 (Med-SA),通过空间深度转置 (SD-Trans) 和超提示适配器 (HyP-Adpt) 实现2D到3D医学图像分割的参数高效微调。实验表明,Med-SA 在17个医学图像分割任务上超越SOTA方法,仅更新2%的参数。
摘要由CSDN通过智能技术生成

期刊分析

期刊名: arXiv
代码: https://github.com/KidsWithTokens/Medical-SAM-Adapter
在这里插入图片描述

摘要

Segment Anything Model (SAM) 最近在图像分割领域广受欢迎,因为它在各种分割任务中具有令人印象深刻的功能及其基于提示的界面。然而,最近的研究和个别实验表明,由于缺乏医学专业知识,SAM 在医学图像分割方面表现不佳。这就提出了如何增强 SAM 对医学图像的分割能力的问题。在本文中,我们没有对 SAM 模型进行微调,而是提出了医学 SAM 适配器 (Med-SA),它使用轻量而有效的适应技术将特定领域的医学知识融入到分割模型中。在 Med-SA 中,我们提出了空间深度转置 (SD-Trans) 来使 2D SAM 适应 3D 医学图像,并提出超提示适配器 (HyP-Adpt) 来实现提示条件适应。我们对跨各种图像模态的 17 个医学图像分割任务进行了综合评估实验。 Med-SA 的性能优于多种最先进 (SOTA) 医学图像分割方法,同时仅更新 2% 的参数。我们的代码发布于 https://github.com/KidsWithTokens/Medical-SAM-Adapter。


引言

最近,分割任何模型(SAM&#

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
基于 Ianvs 和 Sedna 终身学习的复现分割任意物体的模型需要一定的技术和资源支持。Ianvs 是一个自适应学习方法,而 Sedna 是一个基于强化学习的终身学习框架。 要复现分割任意物体的模型,你可以考虑以下步骤: 1. 数据准备:收集包含任意物体分割任务的数据集。可以使用已有的数据集,如 COCO、PASCAL VOC 或 Cityscapes,或者自行标注数据集。 2. 模型选择:选择一个适合的分割模型作为基础网络。常用的模型包括 U-Net、Mask R-CNN、DeepLab 等。根据具体任务和资源情况选择合适的模型。 3. 强化学习框架:将 Sedna 终身学习框架应用于模型训练过程中。Sedna 可以帮助模型在不断接收新任务时进行知识迁移和持续学习。 4. 自适应学习方法:结合 Ianvs 的自适应学习方法来进一步提升模型的性能。Ianvs 可以帮助模型快速适应新任务,并在训练过程中动态调整网络结构。 5. 训练和优化:使用准备好的数据集对模型进行训练,并优化模型性能。可以使用常见的优化方法,如梯度下降和学习率调整。 6. 模型评估:使用测试集评估模型的性能,包括分割精度、速度等指标。根据评估结果进行模型调整和改进。 请注意,复现这样的模型是一个复杂的任务,需要深入了解相关的深度学习、强化学习和终身学习技术,并具备相应的计算资源和数据集。建议参考相关文献或代码库,如论文《Sedna: A Framework for Adapting Object Detectors to New Domains》和相关的开源项目,以获得更详细的指导和实现方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值