马尔科夫链蒙特卡洛方法——正弦噪声估计
我们此节试图将一个时间序列模拟成幅值、频率和相位均未知的
k
k
k 个正弦信号和。正弦信号的数量作为待估计的未知变量来处理,但是为了简化分析,在此将其看成固定值,同时用
ψ
=
(
ψ
1
,
.
.
.
,
ψ
k
)
\psi=(\psi_1,...,\psi_k)
ψ=(ψ1,...,ψk) 表示幅值,用
ω
=
(
ω
1
,
.
.
.
,
ω
k
)
\omega=(\omega_1,...,\omega_k)
ω=(ω1,...,ωk) 表示频率,用
ϕ
=
(
ϕ
1
,
.
.
.
,
ϕ
k
)
\phi=(\phi_1,...,\phi_k)
ϕ=(ϕ1,...,ϕk) 表示相位,数据模拟为
y
=
h
(
x
;
ξ
)
+
ϵ
=
∑
j
=
1
k
ψ
j
c
o
s
(
ω
j
x
+
ϕ
j
)
+
ϵ
y=h(x;\xi)+\epsilon=\sum_{j=1}^k \psi_jcos(\omega_jx+\phi_j)+\epsilon
y=h(x;ξ)+ϵ=j=1∑kψjcos(ωjx+ϕj)+ϵ
其中, ϵ ∼ N ( 0 , σ 2 ) , ξ = { ( ψ j , ω j , ϕ j ) , j = 1 , . . . , k } \epsilon \sim N(0,\sigma^2),\xi=\lbrace (\psi_j,\omega_j,\phi_j),j=1,...,k \rbrace ϵ∼N(0,σ2),ξ={(ψj,ωj,ϕj),j=1,...,k}。
得出下式,说实话这个正态分布看的我也是一知半解,好像和Andrieu and Doucet(1999)一文中的方法和例子有关。
p
(
y
∣
x
;
θ
)
=
1
2
π
σ
2
e
x
p
{
−
(
y
−
h
(
x
;
ξ
)
)
2
2
σ
2
}
p(y|x;\theta)=\frac{1}{\sqrt{2\pi\sigma^2}}exp\lbrace \frac{-(y-h(x;\xi))^2}{2\sigma^2} \rbrace
p(y∣x;θ)=2πσ21exp{2σ2−(y−h(x;ξ))2}
其中,密度参数
θ
=
(
ξ
,
σ
2
)
\theta=(\xi,\sigma^2)
θ=(ξ,σ2) ,训练数据
D
=
{
y
i
,
i
=
1
,
.
.
.
,
n
}
D=\lbrace y_i,i=1,...,n \rbrace
D={yi,i=1,...,n} 由
y
y
y 的
n
n
n 个测量值组成,这些测量值在
x
i
=
i
;
i
=
0
,
1
,
.
.
.
,
n
−
1
x_i=i;i=0,1,...,n-1
xi=i;i=0,1,...,n−1 上获得。设噪声独立,我们有
p
(
D
∣
θ
)
∝
∏
i
=
1
n
1
σ
e
x
p
{
−
(
y
i
−
h
(
x
i
;
ξ
)
)
2
2
σ
2
}
p(D|\theta)\propto \prod_{i=1}^n\frac{1}{\sigma}exp\lbrace \frac{-(y_i-h(x_i;\xi))^2}{2\sigma^2} \rbrace
p(D∣θ)∝i=1∏nσ1exp{2σ2−(yi−h(xi;ξ))2}
我们需要做的事情有:
- 弄清楚给定训练数据下的正弦信号信息;
- 并对新样本 x x x 给出预测值 y y y;
- 使用贝叶斯定理得到后验分布;
- 用MCMC算法从后验分布中采集样本;
- 描述感兴趣的参数,得到新样本的预测值;
对不能用解析法计算后验概率的情形,马尔科夫链蒙特卡洛方法提供了一种问题求解的有效方法。该方法的主要优点是具有灵活性。它们使贝叶斯法能够应用于现实问题,而不再需要对先验分布进行强制假设,或简化成似然函数,以使其在数学上易于处理。其主要缺点是,收敛的不确定性,由此导致从采样中估算精度的不确定性和过高的计算代价。