3D仿真学习笔记(七)-- 五轴精密数控机床坐标系设定

        上图为一五轴精密数控机床结构示意图。C 轴、B 轴相互连接固定在Y轴拖板上,XZ 轴拖板相互垂直,工件安装在 C 轴上,传感器安装在主轴上。下图为精密数控机床拓扑结构。

1 五轴精密数控机床坐标系设定

        建立机床坐标系,基于多体理论推导机床误差综合数学模型,为计算传感器和工件之间的误差和为精密数控机床建模方便,所有机床坐标系都采用右手笛卡尔坐标系。五轴精密数控机床分为两条运动链:

        工件链:在床身上建立参考坐标系 0;在 Y 轴拖板上建立坐标系 1 为低序体 1;在 B 轴转台上建立坐标系 2 为低序体 2;在 C 轴转台上建立坐标系 3 为低序体 3;在工件上建立坐标系 4 为低序体 4。

        传感器链:在 X 轴拖板上建立坐标系 5 为低序体 5;在 Z 轴拖板上建立坐标系 6 作为低序体 6;在主轴上建立坐标系 7 作为低序体 7;在传感器上建立坐标系  8 为低序体 8。

        在建模过程中,规定机床误差变换矩阵的方向从工件坐标系变换到道具坐标系,而误差因素则主要有转角误差、垂直度误差以及移动误差,在实际测量的过程中如果出现了测量结果与规定相反,则以负值进行赋值并进行综合计算。

2  误差运动转换矩阵

        (1)理想(无误差)状态下相邻体间的转换矩阵

        在理想情况下,设 XYZ 拖板分别移动距离 xyz,设旋转轴 B 轴和 C 轴分别转动 \theta_B\theta_C 的角度。

        工件链:从 Y 轴拖板坐标系 1 到参考坐标系 0 的齐次变换矩阵为 _{0}^{1}\textrm{T}^i,从 B 轴坐标系 2 到 Y 轴拖板坐标系 1 的齐次变换矩阵为 _{1}^{2}\textrm{T}^i,从 C 轴坐标系 3 到 B 轴坐标系 2 的变换矩阵可用 _{2}^{3}\textrm{T}^i,从工件坐标系 4 到 C 轴坐标系 3 的变换矩阵可用 _{3}^{4}\textrm{T}^{i},理想状况下工件与 C 轴无相对转动,因此工件坐标系 4 到 C 轴坐标系 3 的齐次变换为单位矩阵,即 _{3}^{4}\textrm{T}^{i} = I。上述工件链的齐次变换矩阵可写作:

\begin{matrix} _{0}^{1}\textrm{T}^{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{} & (1.1) \end{}

\begin{matrix} _{1}^{2}\textrm{T}^{i} = \begin{bmatrix} cos\theta_B & 0 & -sin\theta_{B} & 0 \\ 0 & 1 & 0 & 0 \\ sin\theta_{B} & 0 & cos\theta_{B} & 0 \\ 0 & 0 & 0 & 1 \end{} & (1.2) \end{}

\begin{matrix} _{2}^{3}\textrm{T}^{i} = \begin{bmatrix} cos\theta_{C} & sin\theta_{C} & 0 & 0 \\ -sin\theta_{C} & cos\theta_{C} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{} & (1.3) \end{}

\begin{matrix} _{3}^{4}\textrm{T}^{i} = I &(1.4) \end{}

        传感器链:床身坐标系 0 到 X 轴坐标系 5 的齐次坐标变换矩阵可用 _{5}^{0}\textrm{T}^i 表示,X 轴坐标系 5 到 Z 轴坐标系 6 的齐次变换矩阵可以用 _{6}^{5}\textrm{T}^i 来表示。理想状态下 Z 轴、主轴之间是相对静止的,因此 Z 轴坐标系到主轴坐标系 7 的齐次坐标变换矩阵为单位矩阵,即 _{7}^{6}\textrm{T}^i = I,主轴与传感器之间采用固定连接,所以主轴坐标系 7 到传感器坐标系 8 的齐次变换矩阵为单位矩阵,即 _{8}^{7}\textrm{T}^i = I。上述传感器链的齐次变换矩阵可以写作:

\begin{matrix} _{5}^{0}\textrm{T}^{i} = \begin{bmatrix} 1 & 0 & 0 & x \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{} & (1.5) \end{}

\begin{matrix} _{6}^{5}\textrm{T}^{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & z \\ 0 & 0 & 0 & 1 \end{} & (1.6) \end{}

\begin{matrix} _{7}^{6}\textrm{T}^{i} = {_{8}^{7}\textrm{T}^{i}}= I &(1.7) \end{}

        在理想情况下,工件坐标系到传感器坐标系的齐次变换矩阵为:

\begin{matrix} _{8}^{4}\textrm{T}^i = {_{3}^{4}\textrm{T}^{i}}{_{2}^{3}\textrm{T}^{i}}{_{1}^{2}\textrm{T}^{i}}{_{0}^{1}\textrm{T}^{i}}{_{5}^{0}\textrm{T}^{i}}{_{6}^{5}\textrm{T}^{i}}{_{7}^{6}\textrm{T}^{i}}{_{8}^{7}\textrm{T}^{i}} = \begin{bmatrix} cos\theta_Bcos\theta_C & sin\theta_C & -cos\theta_Csin\theta_B & xcos\theta_Bcos\theta_{C} - ysin\theta_C - zcos\theta_Csin\theta_B \\ -cos\theta_Bsin\theta_C & cos\theta_C & sin\theta_Bsin\theta_C & zsin\theta_Bsin\theta_C - xcos\theta_Bsin\theta_C - ycos\theta_C \\ sin\theta_B & 0 & cos\theta_B & zcos\theta_B + xsin\theta_B \\ 0 & 0 & 0 & 1 \end{} & (1.8) \end{}

        (2)实际状态(有误差)状态下相邻体间的转换矩阵与误差简化

        依据相邻典型体间的运动学误差分析,对五轴精密数控机床误差元素进行分类,由表3.1、表3.2、表3.3可知五轴精密数控机床的几何误差、热误差和里误差有126项。依据运动副在同一自由度各误差可进行线性叠加,可以把五轴精密数控机床误差元素简化合并为42项。

        在实际情况下,拖板 Y 移动距离 y 时存在 3 个移动(几何)误差 \delta_{yY}\delta_{xY}\delta_{zY},3 项转角(几何)误差 \varepsilon_{yY}\varepsilon_{xY}\varepsilon_{zY},3 项热漂移误差 \delta_{yY}(t)\delta_{xY}(t)\delta_{zY}(t);3 项力误差 \delta_{yY}(f)\delta_{xY}(f)\delta_{zY}(f),为简化模型计算量,这里我们把 3 种位置误差简化合称为一个表达式,分别记作:\delta_{xY}(g,t,f)\delta_{yY}(g,t,f)\delta_{zY}(g,t,f)。依据坐标变换、小误差假设理论,Y 轴到参考坐标系的变换矩阵为:

\begin{matrix} _{0}^{1}\textrm{T}^{e} = \begin{bmatrix} 1 & \varepsilon_{zY} & -\varepsilon_{yY} & -\delta_{xY}(g,t,f) \\ -\varepsilon_{zY} & 1 & \varepsilon_{xY} & -\delta_{yY}(g,t,f) \\ \varepsilon_{yY} & -\varepsilon_{xY} & 1 & -\delta_{zY}(g,t,f) \\ 0 & 0 & 0 & 1 \end{} &(1.9) \end{}

        转轴 B 旋转 \theta_B 角度时存在 3 个移动(几何)误差 \delta_{xB}\delta_{yB}\delta_{zB},2 项平行度误差 \kappa _{zb}\kappa _{xb},3 项转角(几何)误差 \varepsilon_{xB}\varepsilon_{yB}\varepsilon_{zB},3 项热漂移误差 \delta_{xB}(t)\delta_{yB}(t)\delta_{zB}(t),3 项力漂移误差 \delta_{xB}(f)\delta_{yB}(f)\delta_{zB}(f),为简化模型计算量,这里我们将 3 种位置误差简化合成为一个表达式为 \delta_{xB}(g,t,f)\delta_{yB}(g,t,f)\delta_{zB}(g,t,f)。同上转轴 B 坐标系到 Y 轴拖板坐标系的误差变换矩阵为:

\begin{matrix} _{1}^{2}\textrm{T}^{e} = \begin{bmatrix} 1 & \varepsilon_{zB} & -\varepsilon_{yB} & -\delta_{xB}(g,t,f) \\ -\varepsilon_{zB} & 1 & \varepsilon_{xB} & -\delta_{yB}(g,t,f) \\ \varepsilon_{yB} & -\varepsilon_{xB} & 1 & -\delta_{zB}(g,t,f) \\ 0 & 0 & 0 & 1 \end{} \begin{bmatrix} 1 & \kappa_{zb} & 0 & 0 \\ -\kappa_{zb} & 1 & \kappa_{xb} & 0 \\ 0 & -\kappa_{xb} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{} &(1.10) \end{}

        转轴 C 旋转 \theta_C 角度时存在 3 个移动(几何)误差 \delta_{xC}\delta_{yC}\delta_{zC},2 项平行度误差 \kappa_{yc}\kappa_{xc},3 项转角(几何)误差 \varepsilon_{xC}\varepsilon_{yC}\varepsilon_{zC},3 项热漂移误差 \delta_{xC}(t)\delta_{yC}(t)\delta_{zC}(t),3 项力漂移误差 \delta_{xC}(f)\delta_{yC}(f)\delta_{zC}(f),为简化模型计算量,这里我们将 3 种位置误差简化合称为一个表达式 \delta_{xC}(g,t,f)\delta_{yC}(g,t,f)\delta_{zC}(g,t,f)。同上旋转轴 C 到旋转轴 B 坐标系的误差变换矩阵为:

\begin{matrix} _{2}^{3}\textrm{T}^{e} = \begin{bmatrix} 1 & \varepsilon_{zC} & -\varepsilon_{yC} & -\delta_{xC}(g,t,f) \\ -\varepsilon_{zC} & 1 & \varepsilon_{xC} & -\delta_{yC}(g,t,f) \\ \varepsilon_{yC} & -\varepsilon_{xC} & 1 & -\delta_{zC}(g,t,f) \\ 0 & 0 & 0 & 1 \end{} \begin{bmatrix} 1 & 0 & -\kappa_{yc} & 0 \\ 0 & 1 & \kappa_{xc} & 0 \\ \kappa_{yc} & -\kappa_{xc} & 1 & 0 \\ 0 & 0 & 0 & 1 \end{} &(1.11) \end{}

        工作台 X 移动距离 x 时存在 3 项移动(几何)误差 \delta_{xX}\delta_{yX}\delta_{zX},3 项转角(几何)误差 \varepsilon_{xX}\varepsilon_{yX}\varepsilon_{zX},1 项垂直度误差 S_{yX},3 项热漂移误差 \delta_{xX}(t)\delta_{yX}(t)\delta_{zX}(t);3 项力误差 \delta_{xX}(f)\delta_{yX}(f)\delta_{zX}(f),同理为简化模型计算量,我们把三种位置误差简化合成为一个表达式 \delta_{xX}(g,t,f)\delta_{yX}(g,t,f)\delta_{zX}(g,t,f),机床参考坐标系到 X 轴拖板的误差变换矩阵为:

\begin{matrix} _{5}^{0}\textrm{T}^{e} = \begin{bmatrix} 1 & -\varepsilon_{zX} & \varepsilon_{yX} & \delta_{xX}(g,t,f) \\ \varepsilon_{zX} & 1 & -\varepsilon_{xX} & \delta_{yX}(g,t,f) - xS_{yX}\\ -\varepsilon_{yX} & \varepsilon_{xX} & 1 & \delta_{zX}(g,t,f) \\ 0 & 0 & 0 & 1 \end{} &(1.12) \end{}

        工作台 Z 移动距离 z 时存在 3 项移动(几何)误差 \delta_{xZ}\delta_{yZ}\delta_{zZ},3 项转角(几何)误差 \varepsilon_{xZ}\varepsilon_{yZ}\varepsilon_{zZ},2 项垂直度误差 S_{xZ}S_{yZ},3 项热漂移误差 \delta_{xZ}(t)\delta_{yZ}(t)\delta_{zZ}(t),3 项力误差 \delta_{xZ}(f)\delta_{yZ}(f)\delta_{zZ}(f),同理为简化模型计算量,这里我们把三种位置误差简化合成为一个表达式为 \delta_{xZ}(t,g,f)\delta_{yZ}(t,g,f)\delta_{zZ}(t,g,f),坐标系 X 到坐标系 Z 的误差变换矩阵为:

\begin{matrix} _{6}^{5}\textrm{T}^{e} = \begin{bmatrix} 1 & -\varepsilon_{zZ} & \varepsilon_{yZ} & \delta_{xZ}(g,t,f) - zS_{xZ} \\ \varepsilon_{zZ} & 1 & -\varepsilon_{xZ} & \delta_{yZ}(g,t,f) - xS_{yZ}\\ -\varepsilon_{yZ} & \varepsilon_{xZ} & 1 & \delta_{zZ}(g,t,f) \\ 0 & 0 & 0 & 1 \end{} &(1.13) \end{}

        在实际情况下,机床主轴制造精度远高于其它运动轴,故在综合误差建模中可以不考虑主轴的几何误差,仅考虑主轴的热误差和力误差。主轴运转时存在 5 项热误差元素,xy 2 个方向上的直线度移动误差 \delta_{xS}(t)\delta_{yS}(t)z 方向上的定位误差 \delta_{zS}(t),绕 xy 轴的转角误差 \varepsilon_{xS}(t)\varepsilon_{yS}(t)。机床主轴运转时存在 5 项力误差元素,xy 2 个方向上的直线度移动误差 \delta_{xS}(f)\delta_{yS}(f)z 方向上的定位误差 \delta_{zS}(f),绕 xy 轴的转角误差 \varepsilon_{xS}(f)\varepsilon_{yS}(f);这里我们将位置误差、角度误差分别简化合成为一个表达式 \delta_{xS}(t,f)\delta_{yS}(t,f)\delta_{zS}(t,f)\varepsilon_{xS}(t,f)\varepsilon_{yS}(t,f),可得 Z 轴坐标系到主轴坐标系的误差变换矩阵为:

\begin{matrix} _{6}^{5}\textrm{T}^{e} = \begin{bmatrix} 1 & 0 & \varepsilon_{yS}(t,f) & \delta_{xS}(t,f) \\ 0 & 1 & -\varepsilon_{xS}(t,f) & \delta_{yS}(t,f)\\ -\varepsilon_{yS}(t,f) & \varepsilon_{xS}(t,f) & 1 & \delta_{zS}(t,f) \\ 0 & 0 & 0 & 1 \end{} &(1.14) \end{}

        在实际情况下,当机床分别沿 XYZ 方向平移 xyz 距离时,转轴 BC 分别转动 \theta_B\theta_C 角度时,工件坐标系到刀具坐标系的变换矩阵为:

\begin{matrix} {_{8}^{4}\textrm{T}} = {_{3}^{4}\textrm{T}^i}{_{3}^{4}\textrm{T}^e}{_{2}^{3}\textrm{T}^i}{_{2}^{3}\textrm{T}^e}{_{1}^{2}\textrm{T}^i}{_{1}^{2}\textrm{T}^e}{_{0}^{1}\textrm{T}^i}{_{0}^{1}\textrm{T}^e}{_{5}^{0}\textrm{T}^i}{_{5}^{0}\textrm{T}^e}{_{6}^{5}\textrm{T}^i}{_{6}^{5}\textrm{T}^e}{_{7}^{6}\textrm{T}^i}{_{7}^{6}\textrm{T}^e} {_{8}^{7}\textrm{T}^i}{_{8}^{7}\textrm{T}^e} & (1.15)\end{}

        在实际状态下,由前向的分析可知,坐标系 4 到坐标系 8 的误差变换矩阵 _{8}^{4}\textrm{E} 为:

\begin {matrix} _{8}^{4}\textrm{E} = _{8}^{4}\textrm{T} - {_{8}^{4}\textrm{T}^i} &(1.16) \end{}

        基于小误差假设,误差运动变换矩阵 _{8}^{4}\textrm{E} 可假设为:

\begin{matrix} _{8}^{4}\textrm{E} = \begin{bmatrix} 1 & -\Delta{\varepsilon_{z}} & \Delta{\varepsilon_{y}} & \Delta{x} \\ \Delta{\varepsilon_{z}} & 1 & -\Delta{\varepsilon_{x}} & \Delta{y} \\ -\Delta{\varepsilon_{y}} & \Delta{\varepsilon_{x}} & 1 & \Delta{z} \\ 0 & 0 & 0 &1 \end{} & (1.17)\end{}

        式中 \Delta{x}\Delta{y}\Delta{z} 为刀具实际位移点相对理想位移点的移动误差。\Delta{\varepsilon_{x}}\Delta{\varepsilon_{y}}\Delta{\varepsilon_{z}} 为刀具实际位置相对理想位置的转角误差。

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
原 理 介 绍 目录: 1.1 介绍 1.2 模具加工的需求 1.3 3 轴,3+2 轴或 5 轴铣削加工方式 1.4 运动形式 1.5 CNC 独立编程 1.6 刀具半径补偿原理 1.7 什么是框架结构 1.8 精度, 速度和表面精度 1.9 模具加工 CNC 程序的结构 1.10 刀具定向在 5 轴加工中运用 1 1.1 介绍 5 轴加工是为复杂工件,特别是在刀具和模具的加工,是以 CAD-CAM-CNC 的 一整套处理为基础的。 编写本手册旨在给CAM 工作站的CNC 编程员以及机床操作工提供更多的帮助 和指导, 使编程和实际加工更能有机的结合起来。 自动精修 SINUMERIK 840D 控制系统具有强大的功能,在大大简化 5 轴编程工作及加 工过程的同时, 可以更有效地提高加工精度。 2 1.2 刀具加工及模具加工的需求 模型结构加工 模具的设计标准已经日益被人们所关注, 加 工效率,加工精度以及简洁的外观造型愈发 变得重要了。 设计过程要靠 CAD 系统, 而复杂表面的加 工程序则来源于 CAM 工作站。 涡轮及涡片加工 由西门子公司生产的 SINUMERIK 840D 控 制系统可以满足刀具和各种模具加工的要 求。 在传统的 2 1/2 D 范围内,3 轴和 5 轴的高 速加工过程具有相同性能: 1.具有良好的操作性能 2.友好的编程界面 3.在 CAD-CAM-CNC 的处理循环中具有优 越的适应性 4.最大程度的提高机床品资 阀门加工 3 现代铣削加工中心的 5 轴加工 模具表面加工质量,加工速度已经变越来越重要了: 复杂表面的加工 加工三维曲线表面时能获得最佳的切割条件 … 有孔的倾斜面 使用 3+2 个轴可以在任意位置进行几何图形加 工 (刀具轴的角度设置可以发生变化)… 深槽加工 可以进行深槽的铣削加工 5 轴动态加工 除 3 个直线轴 X, Y, Z 以外,还可以使用 2 个旋 转轴 A,B 或 C 轴.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值