AIGC内容分享(四十五):AIGC绘画 | OutfitAnyone在线试衣&AnimateAnyone你的科目三

本文介绍了两项创新技术:OutfitAnyone,实现了逼真的虚拟试衣体验,以及AnimateAnyone,用于图像动画化。这两项技术通过AI驱动,支持多风格试穿、实时渲染和用户定制,展示了在电商、虚拟试衣和动漫角色设计领域的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 AIGC绘画 | outfit anyone 虚拟试衣 & animate anyone 图像动画化

本文主要介绍2篇最新研究,outfit anyone 虚拟试衣 和 animate anyone 图像动画化,在在线购物试衣和动画制作上迈出了一小步!

图片

An Asian girl, smiling, dancing in central park, wearing long shirt and long jeans.

虚拟试衣 & 图片动画化

  • 先选择衣服和模特进行试衣

  • 后驱动图像动画化

Outfit Anyone 虚拟换衣——告别试衣间

论文原理

Outfit Anyone是一项新的虚拟试穿技术。该技术通过两流程条件扩散模型,有效处理服装变形,提供更逼真的虚拟试穿效果。它在众多场景中表现出色,包括真实环境、个性化服饰、不同体型甚至动漫角色的试穿。这一技术不仅展现了高度的适应性,还提供了后期精细化处理功能,以增强服装和皮肤纹理的真实感。凭借其超高质量的虚拟试穿功能、多功能性和可扩展性,它提供了真正身临其境且便捷的购物体验。与 Outfit Anyone 一起告别试衣间的麻烦,拥抱时尚的未来

我们方法的核心条件扩散模型使用服装图像作为控制因素来处理模型、服装和随附文本提示的图像。在内部,网络分为两个流,用于独立处理模型和服装数据。这些流汇聚在一个融合网络中,有助于将服装细节嵌入到模型的特征表示中。在此基础上,我们建立了 Outfit Anyone,包括两个关键要素:用于初始试穿图像的零样本试穿网络,以及用于输出图像中服装和皮肤纹理细节增强的事后优化器。

定制的双流处理: “Outfit Anyone”通过将网络分为两个流来处理图像,从而允许单独处理模型和服装数据。这种分离确保了精确的服装变形以及更好地贴合虚拟模型。

复杂的融合网络: “Outfit Anyone”的核心是一个融合网络,差异化的流汇聚于此。在这里,服装细节与模型的特征表示精心结合,有助于实现逼真的虚拟试穿结果。

后期处理细化: 除了初始图像之外,“Outfit Anyone”还采用了事后细化器,可以细化服装和皮肤纹理,从而为最终输出图像提供更高水平的真实感。

“服装任何人”展示了值得称赞的多功能性,处理多样化的风格、体型,甚至在虚拟空间中启用新的角色动画。与“Animate Anyone”相结合,它可以在运动视频中生成服装变化。需要注意的是,该项目的目的纯粹是学术性的,只是作为效果展示,没有任何商业目的。作为研究的延伸以及对 VITON 和 DressCode 等现有公共数据集的认可,“Outfit Anyone”踏上了时尚行业未来愿景的旅程,想象力和包容性塑造了我们与风格和服装互动的方式。

应用场景及特点

Outfit Anyone使用场景:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

之乎者也·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值