更新显卡驱动+下载安装cuda和cudnn+下载torch+查询CUDA和torchvision版本

记录一下本机版本:
tensorflow-gpu2.2.0,CUDA10.1,keras2.3.1,cudnn7.6.5

更新显卡驱动

首先在电脑->设备管理器->显示适配器里找到电脑的显卡配置。
在这里插入图片描述
双击下面这个NVIDIA GefORCE GTX 1050Ti可以看到详细配置。然后进入网址 http://www.nvidia.com/Download/index.aspx 根据显卡型号搜索对应的显卡驱动并下载。

下载好之后,在详细配置页面点击“”更新驱动程序。(如果下载的驱动是exe文件,直接双击安装即可,位置就装在c盘)。在这里插入图片描述
我下载的是exe文件,选择安装图形驱动文件和Geforce experience;安装推荐版本。之后就进入安装中了。安装成功后重启即可。

安装cuda和cudnn

(1)安装duca
首先查看驱动版本和cuda的对应关系,在显卡里看到的驱动版本不对。
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 这个网址可以查看cuda和显卡驱动版本的对应关系,如下:
在这里插入图片描述
查看自己的驱动版本:
按win+Q,输入NVIDIA Control Panel 打开NVIDIA控制面板。
如下:在这里插入图片描述
可知我的是461.72。因为考虑到我下载的torch是1.7.1的,所以待会选择cuda10.1.对应关系放在后面。
cuda10.1的下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
下载好后选择自定义安装:
在打开之前要设置一个临时解压目录,可以放在D盘,如果C盘空间不够的话。
在这里插入图片描述
第一个除了visual tudio全安装了,后面两个由于原来版本就挺高了,就没安装。安装目录我也放在D盘了,C盘空间不太够。
然后就安装完成了。
在cmd里使用 nvcc -V可以查到版本号。
(2)安装cudnn
地址:https://developer.nvidia.com/cudnn
首先要填写一些问卷,填完了之后下载cuda版本对应的即可。
我下载的是第三个:
在这里插入图片描述
下载完之后,把压缩包里对应的子文件分别都复制到cuda目录下对应文件夹里。
再在环境变量里添加:
path:D:\NVIDIA GPU Computing Toolkit\v10.1\lib\x64

然后验证cuda和cudnn是否安装成功:
(1)首先从cmd命令行进入cuda对应的目录下,我的目录如下:
D:\NVIDIA GPU Computing Toolkit\v10.1\extras\demo_suite,里面有两个exe文件,分别在cmd运行。
在这里插入图片描述
(2)同样的文件位置,运行:
在这里插入图片描述
两者运行有Result=PASS即可。

下载torch

https://download.pytorch.org/whl/torch_stable.html

我下载的方式见上一篇文章。
如果对应版本的话应该是这个:
在这里插入图片描述
cu101说明是cuda10.1,torch1.7.1,python3.7,amd64是windows64位系统。在这里插入图片描述
在pip里用如下命令安装(本机win10亲测):

pip install torch==1.7.0+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html

2.记录Linux系统下的,CUDA11.1,torchvision0.10.0,torch1.9.0

CUDA11.1,CUDNN11.0,torch1.7.0,torchvision0.8.0,也是可以的。
查询pytorch对应torchvision的网址:
https://pytorch.org/get-started/previous-versions/

在Ubuntu上安装显卡驱动CuDNNCUDAPyTorch可以按照以下步骤进行: 1. 安装显卡驱动:可以通过以下几种方式安装显卡驱动: - 通过"Software & Updates"工具在“Additional Drivers”选项卡中选择一个适用于您的显卡型号的驱动程序,并点击“Apply Changes”进行安装。 - 通过命令行使用`ubuntu-drivers devices`命令查看可用的驱动,然后使用`sudo ubuntu-drivers autoinstall`命令自动安装推荐的驱动。 2. 安装CuDNNCuDNN是NVIDIA加速库,可提供用于深度学习的GPU加速功能。可以按照以下步骤安装CuDNN: - 前往NVIDIA官方网站,下载适用于您的CUDA版本CuDNN压缩文件(通常需要注册NVIDIA开发者账号)。 - 将CuDNN压缩文件解压缩到一个合适的位置,例如`~/cuda`文件夹。 - 打开终端,使用`cd`命令进入CuDNN解压缩文件的路径,并执行以下命令安装CuDNN: ``` sudo cp cuda/include/cudnn*.h /usr/local/cuda/include/ sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn* ``` 3. 安装CUDACUDA是用于在NVIDIA GPU上进行并行计算的平行计算平台和API。可以按照以下步骤安装CUDA: - 前往NVIDIA官方网站,选择适用于您的显卡和操作系统的CUDA版本,并下载对应的运行文件(通常需要注册NVIDIA开发者账号)。 - 打开终端,使用`cd`命令进入CUDA运行文件所在的目录,并执行以下命令安装CUDA: ``` sudo sh cuda*.run ``` - 执行安装向导中的步骤,根据提示进行安装配置,包括选择安装路径和设置环境变量。 - 安装完成后,可以通过执行`nvcc --version`命令验证CUDA的安装情况。 4. 安装PyTorchPyTorch是一个用于构建深度学习模型的开源Python库。可以按照以下方式安装PyTorch: - 打开终端,执行以下命令安装PyTorch: ``` pip install torch torchvision ``` - 在安装过程中,可能需要下载和编译一些依赖项。请耐心等待安装完成。 安装完成后,您可以在Ubuntu上使用显卡驱动CuDNNCUDAPyTorch进行深度学习任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值