记录一下本机版本:
tensorflow-gpu2.2.0,CUDA10.1,keras2.3.1,cudnn7.6.5
更新显卡驱动
首先在电脑->设备管理器->显示适配器里找到电脑的显卡配置。
双击下面这个NVIDIA GefORCE GTX 1050Ti可以看到详细配置。然后进入网址 http://www.nvidia.com/Download/index.aspx 根据显卡型号搜索对应的显卡驱动并下载。
下载好之后,在详细配置页面点击“”更新驱动程序。(如果下载的驱动是exe文件,直接双击安装即可,位置就装在c盘)。
我下载的是exe文件,选择安装图形驱动文件和Geforce experience;安装推荐版本。之后就进入安装中了。安装成功后重启即可。
安装cuda和cudnn
(1)安装duca
首先查看驱动版本和cuda的对应关系,在显卡里看到的驱动版本不对。
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html 这个网址可以查看cuda和显卡驱动版本的对应关系,如下:
查看自己的驱动版本:
按win+Q,输入NVIDIA Control Panel 打开NVIDIA控制面板。
如下:
可知我的是461.72。因为考虑到我下载的torch是1.7.1的,所以待会选择cuda10.1.对应关系放在后面。
cuda10.1的下载地址:
https://developer.nvidia.com/cuda-toolkit-archive
下载好后选择自定义安装:
在打开之前要设置一个临时解压目录,可以放在D盘,如果C盘空间不够的话。
第一个除了visual tudio全安装了,后面两个由于原来版本就挺高了,就没安装。安装目录我也放在D盘了,C盘空间不太够。
然后就安装完成了。
在cmd里使用 nvcc -V可以查到版本号。
(2)安装cudnn
地址:https://developer.nvidia.com/cudnn
首先要填写一些问卷,填完了之后下载cuda版本对应的即可。
我下载的是第三个:
下载完之后,把压缩包里对应的子文件分别都复制到cuda目录下对应文件夹里。
再在环境变量里添加:
path:D:\NVIDIA GPU Computing Toolkit\v10.1\lib\x64
然后验证cuda和cudnn是否安装成功:
(1)首先从cmd命令行进入cuda对应的目录下,我的目录如下:
D:\NVIDIA GPU Computing Toolkit\v10.1\extras\demo_suite,里面有两个exe文件,分别在cmd运行。
(2)同样的文件位置,运行:
两者运行有Result=PASS即可。
下载torch
https://download.pytorch.org/whl/torch_stable.html
我下载的方式见上一篇文章。
如果对应版本的话应该是这个:
cu101说明是cuda10.1,torch1.7.1,python3.7,amd64是windows64位系统。
在pip里用如下命令安装(本机win10亲测):
pip install torch==1.7.0+cu101 torchvision==0.6.1+cu101 -f https://download.pytorch.org/whl/torch_stable.html
2.记录Linux系统下的,CUDA11.1,torchvision0.10.0,torch1.9.0
CUDA11.1,CUDNN11.0,torch1.7.0,torchvision0.8.0,也是可以的。
查询pytorch对应torchvision的网址:
https://pytorch.org/get-started/previous-versions/