堆栈去噪的数学原理

当我们对多个具有噪声的图像进行堆叠时,假设我们有 N N N个图像,每个图像的像素值表示为 I i ( x , y ) I_i(x, y) Ii(x,y),其中 i = 1 , 2 , . . . , N i = 1, 2, ..., N i=1,2,...,N ( x , y ) (x, y) (x,y) 表示图像的坐标。
对于堆叠后的图像 I stacked ( x , y ) I_{\text{stacked}}(x, y) Istacked(x,y)的像素值,我们可以简单地通过对相同位置的像素值进行平均操作来计算:
I stacked ( x , y ) = 1 N ∑ i = 1 N I i ( x , y ) I_{\text{stacked}}(x, y) = \frac{1}{N} \sum_{i=1}^{N} I_i(x, y) Istacked(x,y)=N1i=1NIi(x,y)
现在,让我们考虑噪声的性质。假设噪声是随机的,并且在每个像素位置上独立地加到每个图像中。如果噪声是这种性质,它在叠加后将会平均为零。
为了更清晰地理解这一点,让我们用随机变量来表示像素的值。假设 X i ( x , y ) X_i(x, y) Xi(x,y)是第 i i i 个图像在位置 ( x , y ) (x, y) (x,y) 上的像素值,$ N(x, y)$ 是噪声的随机变量。那么: I i ( x , y ) = X i ( x , y ) + N ( x , y ) I_i(x, y) = X_i(x, y) + N(x, y) Ii(x,y)=Xi(x,y)+N(x,y)其中 N ( x , y ) N(x,y) N(x,y)是独立同分布的随机变量。
现在,我们考虑堆叠后的图像的像素值:
I stacked ( x , y ) = 1 N ∑ i = 1 N I i ( x , y ) = 1 N ∑ i = 1 N ( X i ( x , y ) + N ( x , y ) ) = 1 N ∑ i = 1 N X i ( x , y ) + 1 N ∑ i = 1 N N ( x , y ) \begin{align*} I_{\text{stacked}}(x, y) &= \frac{1}{N} \sum_{i=1}^{N} I_i(x, y) \\ &= \frac{1}{N} \sum_{i=1}^{N} (X_i(x, y) + N(x, y)) \\ &= \frac{1}{N} \sum_{i=1}^{N} X_i(x, y) + \frac{1}{N} \sum_{i=1}^{N} N(x, y) \end{align*} Istacked(x,y)=N1i=1NIi(x,y)=N1i=1N(Xi(x,y)+N(x,y))=N1i=1NXi(x,y)+N1i=1NN(x,y)
由于 N ( x , y ) N(x, y) N(x,y)是独立同分布的随机变量,其期望值为零,所以:
1 N ∑ i = 1 N N ( x , y ) = 0 \frac{1}{N} \sum_{i=1}^{N} N(x, y) = 0 N1i=1NN(x,y)=0
因此,我们得到:
I stacked ( x , y ) = 1 N ∑ i = 1 N X i ( x , y ) I_{\text{stacked}}(x, y) = \frac{1}{N} \sum_{i=1}^{N} X_i(x, y) Istacked(x,y)=N1i=1NXi(x,y)
也就是说,堆叠后的图像的像素值仅由信号 X i ( x , y ) X_i(x, y) Xi(x,y) 组成,而没有噪声的贡献。
这就是堆栈去噪的数学原理,通过将多个图像叠加起来并取平均,可以消除噪声并提高信噪比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值