(高等代数)ch05

  1. 等价关系(1.反身性 2.对称性 3.传递性)

  2. 划分 U = U 1 ∪ U 2 ∪ ⋯ U n U=U_1\cup U_2 \cup \cdots U_n U=U1U2Un
    U i ∩ U j = Φ , i ≠ j U_i\cap U_j=\varPhi , i\neq j UiUj=Φ,i=j

  3. 相抵(如果A经过一系列行变换和列变换可以变换到B).那么 A ∼ B A\sim B AB也就是相抵.

  4. 相抵是一个等价类.

  5. A s × n A_{s\times n} As×n
    P t P t − 1 ⋯ P 1 A Q 1 Q 2 ⋯ Q m = B ⇒ P A Q = B P_tP_{t-1}\cdots P_1AQ_1Q_2\cdots Q_m=B \Rightarrow PAQ=B PtPt1P1AQ1Q2Qm=BPAQ=B
    其中,P是s级可逆矩阵.Q是n级可逆矩阵.

  6. 如果A的秩为r那么 ( I r 0 0 0 ) \left( \begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right) (Ir000) 叫做A的相抵标准型.

  7. 广义逆矩阵.

    A A − 1 A = A ⇒ A X A = A AA^{-1}A=A \Rightarrow AXA=A AA1A=AAXA=A

    解出X,那么X就是广义逆.

  8. A = P ( I r 0 0 0 ) Q A=P\left( \begin{array}{cc} I_r & 0 \\ 0 & 0 \end{array} \right)Q A=P(Ir000)Q X = Q − 1 ( I r B C D ) P − 1 X=Q^{-1}\left( \begin{array}{cc} I_r & B \\ C & D \end{array} \right)P^{-1} X=Q1(IrCBD)P1 B,C,D可以任意指定.其中X就是广义逆.

  9. 如果 A x = β Ax=\beta Ax=β有解.那么 X = A − β X=A^{-}\beta X=Aβ

  10. 齐次线性方程组 A X = 0 AX=0 AX=0的通解为 X = ( I n − A − A ) Z X=(I_n-A^{-}A)Z X=(InAA)Z
    Z是 K n K^n Kn中任意一个列向量.

  11. Moore-Penrose方程组 { A X A = A X A X = X ( A X ) ∗ = A X ( X A ) ∗ = X A \left\{ \begin{aligned} AXA=A\\ XAX=X\\ (AX)^{*}=AX\\ (XA)^{*}=XA \end{aligned} \right. AXA=AXAX=X(AX)=AX(XA)=XA
    其中 A ∗ A^{*} A是共轭转置.这个方程组的解称作 A + A^{+} A+叫做Moore-Penrose广义逆.

  12. 如果A是复数域上面的非0矩阵.Penrose广义逆总是有解,且解唯一.

  13. 相似矩阵定义,如果两个n级矩阵A,B.以及存在一个n级的可逆矩阵使得
    P − 1 A P = B P^{-1}AP=B P1AP=B 那么,我们称A,B相似.

  14. 迹的定义 t r ( A ) = a 11 + a 22 + ⋯ + a n n tr(A)=a_{11}+a_{22}+\cdots+a_{nn} tr(A)=a11+a22++ann

  15. 迹的性质
    t r ( A + B ) = t r ( A ) + t r ( B ) tr(A+B)=tr(A)+tr(B) tr(A+B)=tr(A)+tr(B)
    t r ( k A ) = k t r ( A ) tr(kA)=ktr(A) tr(kA)=ktr(A)
    t r ( A B ) = t r ( B A ) tr(AB)=tr(BA) tr(AB)=tr(BA)

  16. 相似矩阵有相同的迹.

  17. A可对角化的定义是
    P − 1 A P = d i a g { ( λ 1 , λ 2 , ⋯   , λ n ) } P^{-1}AP=diag\{\left( \lambda_1, \lambda_2, \cdots, \lambda_n \right)\} P1AP=diag{(λ1,λ2,,λn)}

  18. 如果A相似于一个对角矩阵.那么A可对角化.

  19. 特征值,特征向量 A v = λ v Av=\lambda v Av=λv

  20. 特征方程 ∣ λ I − A ∣ = 0 |\lambda I -A|=0 λIA=0的根是特征值.

  21. λ 0 \lambda_0 λ0的特征向量为以下方程的解 ( λ 0 I − A ) X = 0 (\lambda_0I-A)X=0 (λ0IA)X=0

  22. 相似矩阵有相等的特征多项式.
    ∣ λ I − B ∣ = ∣ λ I − P − 1 A P ∣ = ∣ P − 1 ( λ I − A ) P ∣ = ∣ λ I − A ∣ |\lambda I -B|=|\lambda I -P^{-1}AP|=|P^{-1}(\lambda I-A)P|=|\lambda I -A| λIB=λIP1AP=P1(λIA)P=λIA

  23. 对于 ∣ λ I − A ∣ |\lambda I -A| λIA是一个n次多项式.那么 − t r ( A ) -tr(A) tr(A)
    λ n − 1 \lambda^{n-1} λn1的系数.常数项为. ( − 1 ) n ∣ A ∣ (-1)^n|A| (1)nA
    λ n − k \lambda^{n-k} λnk是A的所有k阶主子式的和乘以 ( − 1 ) k (-1)^k (1)k.

  24. t r ( A ) = ∑ i = 1 n λ i tr(A)=\sum_{i=1}^{n}\lambda_i tr(A)=i=1nλi, ∣ A ∣ = ∏ i = 1 n λ i |A|=\prod_{i=1}^n\lambda_i A=i=1nλi

  25. 几何重数: λ i \lambda_i λi特征子空间的维数.

  26. 代数重数: λ i \lambda_i λi重根的个数.

  27. λ i \lambda_i λi的几何重数不超过代数重数.

  28. 正交矩阵的特征值为1或-1 A v = λ v Av=\lambda v Av=λv
    ( v T A T ) A v = ( λ v T ) ( λ v ) ⇒ ∣ ∣ v ∣ ∣ = λ 2 ∣ ∣ v ∣ ∣ (v^TA^T)Av=(\lambda v^T)(\lambda v) \Rightarrow ||v||=\lambda^2 ||v|| (vTAT)Av=(λvT)(λv)v=λ2v

  29. A
    可以对角化的充分必要条件是,A有n个线性无关的特征向量 ( α 1 , α 2 , ⋯   , α n ) \left( \alpha_1, \alpha_2, \cdots, \alpha_n \right) (α1,α2,,αn),此时
    P = ( α 1 , α 2 , ⋯   , α n ) P=\left( \alpha_1, \alpha_2, \cdots, \alpha_n \right) P=(α1,α2,,αn)
    P − 1 A P = d i a g { λ 1 , λ 2 , ⋯   , λ n } P^{-1}AP=diag\{\lambda_1,\lambda_2,\cdots, \lambda_n\} P1AP=diag{λ1,λ2,,λn} 简要证明:
    P − 1 A P = P − 1 P ( λ 1 λ 2 ⋮ λ n ) P^{-1}AP=P^{-1}P\left( \begin{array}{c} \lambda_1 \\ \lambda_2\\ \vdots\\ \lambda_n \end{array} \right) P1AP=P1Pλ1λ2λn

  30. 不同特征值的特征向量之间线性无关.
    假设 k 1 α 1 + k 2 α 2 + ⋯ + k s α s + l 1 β 1 + l 2 β 2 + ⋯ + l r β r = 0 k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s+l_1\beta_1+l_2\beta_2+\cdots+l_r\beta_r=0 k1α1+k2α2++ksαs+l1β1+l2β2++lrβr=0
    A ( k 1 α 1 + k 2 α 2 + ⋯ + k s α s + l 1 β 1 + l 2 β 2 + ⋯ + l r β r ) = 0 A(k_1\alpha_1+k_2\alpha_2+\cdots+k_s\alpha_s+l_1\beta_1+l_2\beta_2+\cdots+l_r\beta_r)=0 A(k1α1+k2α2++ksαs+l1β1+l2β2++lrβr)=0
    k 1 λ 1 α 1 + k 2 λ 1 α 2 + ⋯ + k s λ 1 α s + l 1 λ 2 β 1 + l 2 λ 2 β 2 + ⋯ + l r λ 2 β r k_1\lambda_1\alpha_1+k_2\lambda_1\alpha_2+\cdots+k_s\lambda_1\alpha_s+l_1\lambda_2\beta_1+l_2\lambda_2\beta_2+\cdots+l_r\lambda_2\beta_r k1λ1α1+k2λ1α2++ksλ1αs+l1λ2β1+l2λ2β2++lrλ2βr

因为 λ 1 ≠ λ 2 \lambda_1\ne \lambda_2 λ1=λ2,假设 λ 1 ≠ 0 \lambda_1\ne 0 λ1=0
k 1 λ 1 α 1 + k 2 λ 1 α 2 + ⋯ + k s λ 1 α s + l 1 λ 1 β 1 + l 2 λ 1 β 2 + ⋯ + l r λ 1 β r = 0 k_1\lambda_1\alpha_1+k_2\lambda_1\alpha_2+\cdots+k_s\lambda_1\alpha_s+l_1\lambda_1\beta_1+l_2\lambda_1\beta_2+\cdots+l_r\lambda_1\beta_r=0 k1λ1α1+k2λ1α2++ksλ1αs+l1λ1β1+l2λ1β2++lrλ1βr=0

两式相减.
l 1 ( λ 2 − λ 1 ) β 1 + l 2 ( λ 2 − λ 1 ) β 2 + ⋯ + l r ( λ 2 − λ 1 ) β r = 0 l_1(\lambda_2-\lambda_1)\beta_1+l_2(\lambda_2-\lambda_1)\beta_2+\cdots+l_r(\lambda_2-\lambda_1)\beta_r=0 l1(λ2λ1)β1+l2(λ2λ1)β2++lr(λ2λ1)βr=0

因为 β 1 , β 2 , ⋯   , β r \beta_1,\beta_2,\cdots, \beta_r β1,β2,,βr线性无关.所以.上面推出矛盾.

  1. A不同特征值的特征向量所组成的集合,线性无关.

  2. A可以对角化的充分必要条件是A有n个线性无关的特征向量.

  3. 二次曲面举例 x 2 + 4 y 2 + z 2 − 4 x y − 8 x y − 4 y z − 1 = 0 x^2+4y^2+z^2-4xy-8xy-4yz-1=0 x2+4y2+z24xy8xy4yz1=0

  4. 如果一个矩阵可以把一个二次曲面变成标准型.那么这个矩阵一定是正交阵.
    ( x y z ) = M ( x ∗ y ∗ z ∗ ) \left( \begin{array}{c} x \\ y \\ z \end{array} \right)=M\left( \begin{array}{c} x^{*} \\ y^{*} \\ z^{*} \end{array} \right) xyz=Mxyz ( x ∗ , y ∗ , z ∗ ) M T A M ( x ∗ y ∗ z ∗ ) (x^{*}, y^{*}, z^{*})M^TAM\left( \begin{array}{c} x^{*} \\ y^{*} \\ z^{*} \end{array} \right) (x,y,z)MTAMxyz 其中 D = M T A M T D=M^TAM^T D=MTAMT,是一个对角矩阵.

  5. 正交相似:如果存在一个正交阵 M M M使得 M − 1 A M = B M^{-1}AM=B M1AM=B.
    那么就称A正交相似于B.

  6. 实对称矩阵,特征多项式的每一个根都是实数.从而可以推断实对称矩阵含有n个特征值.继而有n个非线性相关的特征向量.

    A α = λ α A\alpha=\lambda\alpha Aα=λα

    A α ‾ = λ α ‾ ⇒ A α ‾ = λ ‾ α ‾ \overline{A\alpha}=\overline{\lambda\alpha}\Rightarrow A\overline{\alpha}=\overline{\lambda}\overline{\alpha} Aα=λαAα=λα

    α T A α ‾ = λ ‾ α T α ‾ \alpha^TA\overline{\alpha}=\overline{\lambda}\alpha^T\overline{\alpha} αTAα=λαTα

α T A α ‾ = λ α T α ‾ \alpha^TA\overline{\alpha}=\lambda\alpha^T\overline{\alpha} αTAα=λαTα

上面两个式子相减可得
( λ ‾ − λ ) α T α ‾ = 0 (\overline{\lambda}-\lambda)\alpha^T\overline{\alpha}=0 (λλ)αTα=0

由此课件 λ ‾ − λ = 0 \overline{\lambda}-\lambda=0 λλ=0,故而, λ \lambda λ是实数.

  1. 实对象矩阵,属于不同特征值的特征向量是正交的. λ 1 ( α 1 , α 2 ) = ( λ 1 α 1 , α 2 ) = α 1 T A a 2 λ 2 ( α 1 , α 2 ) = ( α 1 , λ 2 α 2 ) = α 1 T A a 2 \left. \begin{aligned} \lambda_1(\alpha_1,\alpha_2)=(\lambda_1\alpha_1,\alpha_2)=\alpha_1^TAa_2\\ \lambda_2(\alpha_1,\alpha_2)=(\alpha_1,\lambda_2\alpha_2)=\alpha_1^TAa_2\\ \end{aligned} \right. λ1(α1,α2)=(λ1α1,α2)=α1TAa2λ2(α1,α2)=(α1,λ2α2)=α1TAa2 上下相减,可得证.

  2. 实对称矩阵正交相似于对角矩阵.(实对称矩阵一定可以对角化)

  3. 如果一个n级矩阵A正交相似于一个对角阵D,那么A一定是对称矩阵.

  4. n级实对称矩阵正交相似的充分必要条件是他们相似.

  5. e A = ∑ m = 0 + ∞ A m m ! e^{A}=\sum_{m=0}^{+\infty}\frac{A^m}{m!} eA=m=0+m!Am

  6. e A + B ≠ e A e B e^{A+B}\neq e^Ae^B eA+B=eAeB, 通常是不等的.

  7. 对于任意一个n级实矩阵A, e A e^A eA可逆, ( e A ) − 1 = e − A (e^A)^{-1}=e^{-A} (eA)1=eA

  8. 如果A是n级斜对称矩阵,那么 e A e^{A} eA是正交矩阵.

  9. 我们来看 A = ( 0 x − x 0 ) ⇒ e A = ( c o s ( x ) s i n ( x ) − s i n ( x ) c o s ( x ) ) A=\left( \begin{array}{cc} 0 & x \\ -x & 0 \end{array} \right) \Rightarrow e^A=\left( \begin{array}{cc} cos(x) & sin(x) \\ -sin(x) & cos(x) \end{array} \right) A=(0xx0)eA=(cos(x)sin(x)sin(x)cos(x))

  10. e P − 1 A P = P − 1 e A P e^{P^{-1}AP}=P^{-1}e^{A}P eP1AP=P1eAP
    e P − 1 A P = ∑ m = 0 + ∞ ( P − 1 A P ) m m ! = ∑ m = 0 + ∞ P − 1 A m P m ! e^{P^{-1}AP}=\sum_{m=0}^{+\infty}\frac{(P^{-1}AP)^m}{m!}=\sum_{m=0}^{+\infty}\frac{P^{-1}A^mP}{m!} eP1AP=m=0+m!(P1AP)m=m=0+m!P1AmP

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值