【MQ笔记】这可能是目前最详细的相机标定坐标转换介绍了~

这篇博客详细介绍了相机标定中的坐标转换,包括图像像素坐标系、图像物理坐标系、相机坐标系和世界坐标系之间的转换关系。通过齐次坐标和矩阵运算,阐述了二维到二维、三维到三维的坐标变换,并解析了针孔模型在三维到二维坐标变换中的作用。文章旨在帮助读者深入理解计算机视觉中的坐标转换原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在我之前的博文 https://blog.csdn.net/qq_45427038/article/details/99672093 里,介绍了计算机视觉系统中涉及到的4种坐标系:图像像素坐标系、图像物理坐标系、相机坐标系和世界坐标系。但是对于这些坐标系之间的转换方式介绍的比较粗略,所以今天新开一贴,专门讲讲坐标的那点事儿~

摄像机采集的数字图像在计算机内可以储存为数组,数组中的每一个元素(像素,pixel)的值即为图像点的亮度(也就是灰度值)。图像像素坐标系(pixel coordinate system)是以图像左上角为原点(O_{0})建立的坐标系。像素的横坐标u与纵坐标v分别是在其图像数组中所在的列数与所在行数,一般用 (u,v) 表示。

图像的像素坐标系只表示像素位于数组中的列数和行数,没有物理单位。为了用物理单位表示出该像素在图像中的位置,建立图像物理坐标系(retinal coordinate system,也可以叫像平面坐标系,单位常用mm,一般用 (x,y) 表示。在xy坐标系中,原点 O_{1} 定义在摄像机光轴和图像平面的交点,成为图像的主点(principal point),该点一般位于图像的中心处,也可能因为加工原因存在偏差。

基于上述定义,我们可以得到,图像中任何一个像素在两个坐标系下坐标的对应关系为:

\left\{\begin{matrix} u=u_{0}+\frac{x}{\mu _{x}}-\frac{ycot\theta }{\mu _{x}}\\ v=v_{0}+\frac{y}{\mu _{y}sin\theta } \end{matrix}\right.

其中,\mu _{x}\mu _{x}表示单一像素在x轴和y轴方向上的物理长度(其单位可理解为 mm/像素),\theta 表示u轴和v轴之间的夹角,理想情况下\theta=90^{\circ}

将上述方程以齐次坐标和矩阵的形式表示,则有:

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值