程序员的自我修养之数学基础08:特征值、特征向量和特征值分解

特征值和特征向量是线性代数中的关键概念,描述了矩阵在变换时仅发生伸缩不变性的向量及其伸缩比例。特征值分解将矩阵分解为对角阵和特征向量矩阵,用于数据降维和主成分分析(PCA)。实对称矩阵的特征向量构成正交基,其特征值分解有特殊性质。
摘要由CSDN通过智能技术生成

啊,转行学计算机的过程,就是不断“开倒车”的过程……为了理解概念A,你发现你得先理解概念BCD,为了理解概念B,你发现还得明白概念EFD……一直开倒车到大一的高数线代……不过Anyway,坚持就是胜利,继续看下去吧!!!

特征向量和特征矩阵,真的是非常非常重要的概念啊,不管是课本还是论文里,翻一翻就能看到。那它们到底在说什么呢?先甩概念——

看起来有点晕,不急,让我们理一理。

我们知道,矩阵,代表的是“线性变换”的规则,而矩阵的乘法,则代表这种变换。因此\boldsymbol{Ax},就可以看做是\bg_white \boldsymbol{x} 在\bg_white \boldsymbol{A} 作用下的变化,而这个变化是什么样的呢? \lambda \boldsymbol{x}\lambda是一个数值(可以是实数也可以是虚数),那 \lambda \boldsymbol{x}就是向量 \boldsymbol{x}在它本身方向(\lambda为负则是反方向)上的“拉伸”变化。也就是说,矩阵的特征想留,就是在这个矩阵作用下,不发生旋转、移动,只发生伸缩变换的向量。而伸缩的比例就是特征值。

下面来一个很炫酷的例子~下面这3个图呢,都代表了我们收集到的数据点。当我们将数据点投影到x1轴上时,我们可以看到图一的离散度最高,也就是说,数据在所投影的维度上有更高的区分度,也就是“信息量”更大,这种思想,就是我们所说的“降维”。对于图1,保留x1轴方向上的数据就很好,对于图2,我们可以保留x2轴方向上的维度。那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值