命题逻辑<1>——命题逻辑

§ 1 \S1 §1 命题逻辑的基本概念

命题

定义1.1 命题

同时满足以下所有条件:

  1. 被判断的对象具有确定性。
  2. 判断的结果(真值)也具有确定性,非真既假(只能是0或1之一)。
  3. 形式为陈述句。

逻辑联结词

定义1.2 非(否定)联结词 ¬ \neg ¬

使用了否定联结词的复合命题 ¬ p \neg p ¬p称为否定式。
运算真值表如下:

p p p ¬ \neg ¬ p
01
10

电路的形象化表示为反转开关开闭状态。

开关反转电路

在集合中,设1代表全集 E E E,0代表空集 ∅ \varnothing ,则否定联结词对应补集运算。

P P P ∼ P \sim P P
E E E ∅ \varnothing
∅ \varnothing E E E

定义1.3 与(合取)联结词 ∧ \wedge

使用了合取联结词的复合命题 p ∧ q p \wedge q pq称为合取式。
运算真值表如下:

p p p q q q p ∧ q p \wedge q pq
000
010
100
111

电路的形象化表示为串联状态。

开关1开关2串联电路

在集合中,设1代表全集 E E E,0代表空集 ∅ \varnothing ,则合取联结词对应交集运算。

A A A B B B A ∩ B A \cap B AB
∅ \varnothing ∅ \varnothing ∅ \varnothing
∅ \varnothing E E E ∅ \varnothing
E E E ∅ \varnothing ∅ \varnothing
E E E E E E E E E

定义1.4 或(析取)联结词 ∨ \vee

使用了析取联结词的复合命题 p ∨ q p \vee q pq称为析取式。
运算真值表如下:

p p p q q q p ∨ q p \vee q pq
000
011
101
111

电路的形象化表示为并联状态。

开关1开关2并联电路

在集合中,设1代表全集 E E E,0代表空集 ∅ \varnothing ,则合取联结词对应并集运算。

A A A B B B A ∪ B A \cup B AB
∅ \varnothing ∅ \varnothing ∅ \varnothing
∅ \varnothing E E E E E E
E E E ∅ \varnothing E E E
E E E E E E E E E

定义1.5 蕴含联结词 → \to

使用了蕴含联结词的复合命题 p → q p \to q pq称为蕴含式。
运算真值表如下:

p p p q q q p → q p \to q pq
001
011
100
111

在集合中蕴含联结词对应包含关系。

x ∈ A x \in A xA x ∈ B x \in B xB A ⊆ B A \subseteq B AB
001
011
100
111

从集合运算角度可以真正理解蕴含联结词定义的目的,若任意的元素 x ∉ A x \notin A x/A,此时 x ∈ B x \in B xB x ∉ B x \notin B x/B都有成立的可能性,并且不影响 A ⊆ B A \subseteq B AB的成立,只有当 x ∈ A x \in A xA但是 x ∉ B x \notin B x/B时,才能推出 A ⊈ B A \not \subseteq B AB;
特殊情况 A = ∅ A = \varnothing A=下, x ∈ B x \in B xB恒为假,则 A ⊆ B A \subseteq B AB恒为真,所以空集是所有集合的子集。
进一步,如果考虑对集合的描述,则集合中的任意元素都满足集合的描述,将集合 A A A的描述视为充分条件, x ∈ A x \in A xA代表 A A A的描述中有关于 x x x的命题 p p p成立,集合 B B B的描述视为必要条件, x ∈ B x \in B xB代表 B B B的描述中有关于 x x x的命题 q q q成立,则当 p p p不满足充分条件时,讨论 p → q p \to q pq的推理过程一致性没有意义,同时,必要条件是否成立都有可能,不受充分条件影响。

定义1.5 等价联结词 ↔ \leftrightarrow

使用了等价联结词的复合命题 p ↔ q p \leftrightarrow q pq称为等价式。
运算真值表如下:

p p p q q q p ↔ q p \leftrightarrow q pq
001
010
100
111

在集合中等价联结词对应相等关系。

x ∈ A x \in A xA x ∈ B x \in B xB A = B A = B A=B
001
010
100
111

命题公式

定义1.7 命题公式(合式公式/命题形式)

不含有任何逻辑联结词的命题称为原子命题,全体原子命题集合称为 A t o m ( p ) \mathsf{Atom\left ( p \right )} Atom(p),反之则是复合命题。
真值为常数的命题称为命题常元(命题常项)。
而真值为变量,值域为 { 0 , 1 } \left \{ 0,1 \right \} {0,1}的命题称为命题变元(命题变项)。
命题常元与命题变元统称为原子公式。
命题变项可以通过括号和逻辑联结词组成有限长度的命题公式(合式公式/命题形式),全体命题公式集合称为 F o r m ( p ) \mathsf{Form\left ( p \right )} Form(p),通常只使用逻辑联结词五元组 S = { ∨ , ∧ , ¬ , → , ↔ } S = \left \{ \vee, \wedge ,\neg ,\to ,\leftrightarrow \right \} S={,,¬,,},就能满足逻辑联结词的完备性。
逻辑连结词的运算优先级从高到低排序为为非逻辑连结词,合取连结词,析取联结词,蕴含联结词,等价联结词。
命题公式的递归定义:

  1. 命题常元 r r r和命题变元 p p p, q q q都是命题公式。
  2. 如果 A A A, B B B是命题公式,则 ¬ A \neg A ¬A, A ∧ B A\wedge B AB, A ∨ B A\vee B AB, A → B A\to B AB, A ↔ B A\leftrightarrow B AB也是命题公式。
  3. 只有有限步引用上述规则生成的合式才是命题公式。

命题公式层数的递归定义:

  1. 若公式 A A A为单个命题变元,则 A A A为0层公式。
  2. A A A n − 1 n-1 n1层公式,则公式 ¬ A \neg A ¬A n n n层公式。
  3. A A A, B B B分别是 i i i, j j j层公式,则公式 A ∧ B A\wedge B AB, A ∨ B A\vee B AB, A → B A\to B AB, A ↔ B A\leftrightarrow B AB n = max ⁡ { i , j } n=\max \left \{ i,j \right \} n=max{i,j}层公式。

定义 n n n为命题公式的层数。

定义1.8 赋值(指派/解释)

对于公式 A A A中所有命题变元 { p 1 , p 2 , … , p i , … , p n ∣ i , n ∈ N + , 1 ≤ i ≤ n } \left \{ p_{1},p_{2},\dots, p_{i},\dots , p_{n} \mid i,n\in \mathbb{N^{+},1\le i \le n } \right \} {p1,p2,,pi,,pni,nN+,1in},对其中每一个命题变元 p i p_{i} pi都指定真值 π = { α 1 , α 2 , … , α i , … , α n ∣ i , n ∈ N + , 1 ≤ i ≤ n , α i ∈ B } \pi=\left \{ \alpha _{1},\alpha _{2},\dots ,\alpha _{i},\dots ,\alpha _{n}\mid i,n\in \mathbb{N^{+},1\le i \le n },\alpha _{i}\in B \right \} π={α1,α2,,αi,,αni,nN+,1in,αiB},则命题公式 A A A也能计算真值,称对给定命题变元 { p 1 , p 2 , … , p i , … , p n ∣ i , n ∈ N + , 1 ≤ i ≤ n } \left \{ p_{1},p_{2},\dots, p_{i},\dots , p_{n} \mid i,n\in \mathbb{N^{+},1\le i \le n } \right \} {p1,p2,,pi,,pni,nN+,1in}的一个可能取值组合 π \pi π为对 A A A的命题公式一个赋值(指派/解释),若 A A A的真值为真,这组赋值称为成真赋值,记为 α ( A ) = 1 \alpha \left ( A \right ) = 1 α(A)=1,若 A A A的真值为假,这组赋值称为成假赋值,记为 α ( A ) = 0 \alpha \left ( A \right ) = 0 α(A)=0
从函数(运算)的角度,公式 A A A可看做以联结词作为逻辑运算符,关于自变量 { p 1 , p 2 , … , p i , … , p n ∣ i , n ∈ N + , 1 ≤ i ≤ n } \left \{ p_{1},p_{2},\dots, p_{i},\dots , p_{n} \mid i,n\in \mathbb{N^{+},1\le i \le n } \right \} {p1,p2,,pi,,pni,nN+,1in}的一个真值函数,其定义域与值域均为 B B B
从形式语言的角度,公式 A A A又是一个正则字符串。

定义1.9 真值表

A A A所有赋值与 A A A在所有赋值下对应的真值列表,前 n n n列为所有 n n n个命题变元的所有可能赋值,后 k k k列为 A A A在逐层添加 k k k个逻辑联结词后确定的真值。
这种表格称为真值表,总计 2 n 2^n 2n行与 k + n k+n k+n列。

p 1 p _{1} p1 p 2 p_{2} p2 ⋯ \cdots p i p_{i} pi ⋯ \cdots p n p_{n} pn A 1 A_{1} A1 A 2 A_{2} A2 ⋯ \cdots A i A_{i} Ai ⋯ \cdots A k = A A_{k}=A Ak=A
000000 ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots
111111 ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots ⋯ \cdots

定义1.10 重言式(永真式) 矛盾式(永假式) 可满足式

A A A在所有赋值之下根据取值分类:
永真式:对所有赋值均为真;
永假式:对所有赋值均为假;
可满足式(包含永真式):对一部分赋值为真。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值