异常检测:Towards Total Recall in Industrial Anomaly Detection

Towards Total Recall in Industrial Anomaly Detection

本篇文章采取的方法是基于密度的异常检测方法

原论文链接,2021的一篇异常检测论文在MVTec其检测准确率和分割准确率分别达到了99.1%和98.1%
排名

研究背景:

能够发现工业制造中零部件存在的缺陷是提高工业制造质量的一个很重要的环节。在使用神经网络的模型中,尽管为每个类别手动设置解决方案是可能的,但系统的最终目标是构建一个系统能同时自动在许多不同类别任务上效果良好。

目前最好的方法是将ImageNet模型的嵌入向量和异常检测模型相结合。这篇论文就是沿着目前这条研究线,在这个基础上提出:PatchCore,which uses a maximally representative memory bank of nominal patch features.

本文亮点:

所提出的PatchCore,在MVTec数据集上能够实现不仅检测速度快,还可以实现缺陷的高精确度检测与定位!
检测效果

论文核心知识点

Patch: 所谓补丁,指的是像素;
PatchCore: 也就是补丁的核心信息;
Embedding: 所谓嵌入,指的是将网络提取的不同特征组合到一块;
Nominal samples: 正常样本即不包含异常的样本;
Memory bank: 就是记忆提取到的特征的集合;

Pretrained Encoder: 使用预训练模型(wide_resnet50_2) backbone 提取图像特征, 采用[2, 3]层特征作为图像特征,具有较强的底层特征(轮廓、边缘、颜色、纹理和形状特征),更能够反映图像内容。不采用最后几层原因:深层特征偏向于分类任务,具有更强的语义信息。
Locally aware patch features: 提取图像的 Patch特征,这个特征带有周围数据的信息。特征值的集合构建 PatchCore Memory bank;
Coreset Subsampling: 核心集二次抽样;
Coreset-reduced patch-feature memory bank:: 稀疏采样 目的是Reduce memory bank,加快算法运行速度。
anomaly score: 就是你训练正常的数据,捕获正常图像的特征,然后有一个异常的数据进来,就会和正常数据产生一个差异,通过整个差异来判断是否是异常。

模型框架

模型
算法流程大致为:通过预训练好的ResNet-50在正常样本上面进行特征提取(不从Resnet最后一层获取特征,而是从中间获取)随后再采用 coreset subsampling,进行有效的降采样生成更加核心的特征集即memory bank 。
在测试的时候,将提取到的特征通过 nearest neighbour search(最近邻搜索:每个query进来,首先找最近距离最近的领域质心,找到距离query最近的质心后,锁定该领域) 然后在该领域内计算距离最远的数据点,用该距离计算anomaly score,判断是否异常,得到结果。

  • 9
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 6
    评论
### 回答1: "朝着工业异常检测的全面回忆迈进"是指致力于实现在工业生产过程中对异常情况的全面回溯和记录。这样的系统可以帮助企业快速识别和解决异常情况,提高生产效率和质量。实现这样的系统需要采集大量的生产数据,并利用先进的算法进行处理和分析。同时,还需要建立可靠的数据存储和管理系统,确保数据的完整性和安全性。总的来说,实现工业异常检测的全面回溯需要跨学科的协作和技术的支持。 ### 回答2: 在工业系统中,异常检测是一个非常关键的任务,一旦异常被检测到,可以及时采取措施来避免生产线的停滞和工业事故的发生。为了提高异常检测的准确性和效率,研究人员正在不断尝试将人类的记忆方式应用到机器学习中,实现“完全回忆”。 目前,工业异常检测中常用的方法是基于统计学的方法,但这些方法的缺点是需要大量的数据和专业知识,而且无法处理复杂和多变的数据。相反,人类的大脑能够准确地理解环境中的各种信号,并快速地做出反应。为了实现这种类似于人类的记忆功能,人工智能领域提出了不同的方法,如深度学习、神经网络等。 其中,深度学习已经被证明是在工业异常检测中最有效的方法之一,尤其是在处理大量数据时。深度学习模型可以通过输入工业数据和异常数据进行训练,在预测生产过程中的异常时表现出色。但是,为了实现“完全回忆”,还需要解决模型在面对新型异常时的适应问题。 一个可能的解决方案是构建一个基于迁移学习的模型,该模型可以从已有的异常数据中学习到经验,并在发现新型异常时自动适应。此外,研究人员可以尝试使用更加先进的人工智能技术,如注意力机制和增强学习,来提高模型的准确性和可靠性。 总之,通过应用类似于人类记忆功能的深度学习模型和其他人工智能技术,工业异常检测可以更加准确、高效,并可以实现“完全回忆”。这将对工业生产的安全和效率有着积极的影响。 ### 回答3: 近年来,随着物联网技术的快速发展,大量的传感器数据被收集并用于工业异常检测异常检测是工业生产中非常重要的一个环节,它能帮助企业实时识别和处理生产过程中的异常情况,从而提高生产效率、降低成本、提升产品质量。但工业环境下存在各种噪声、复杂运行条件和复杂的生产过程等挑战,因此确保工业异常检测的精确性至关重要。 为了实现更精确的工业异常检测,研究人员提出了“全面回忆”的概念,旨在通过利用所有可用信息来识别一些异常情况。具体来说,全面回忆从三个方面着手:一是从数据收集开始,尽可能多地收集机器的输出数据。二是利用深度学习等技术有效地处理这些数据,从而进行分类和聚类分析。三是结合专家领域知识,利用额外的信息来完成异常识别和分析。 实现全面回忆的目标需要考虑多个方面的技术挑战。首先,需要设计创新的数据集、流水线和算法,以捕获复杂工业环境中的多方面信息和随时间变化的变化情况。其次,需要利用大规模的计算机资源来实现高效的数据处理和模型训练。此外,还需要设计到位的专家领域知识建模和融合策略,以确保高准确度和高鲁棒性的异常检测。 总之,全面回忆是工业异常检测研究领域的一个重要方向,它将为挖掘大量生产数据提供强有力的支持,有望为工业生产的智能化和智能化水平提高做出重要贡献。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值