patchcore: Towards Total Recall in Industrial Anomaly Detection

patchcore论文地址

简介

算法

在这里插入图片描述

Locally aware patch features

样本用 x x x表示
label定义:0是正常样本(nominal),1是异常样本(anomalous)。 y x ∈ { 0 , 1 } y_x \in \{ 0 , 1\} yx{0,1}
训练阶段使用正常样本 : ∀ x ∈ X N : y x = 0 {\forall} x \in X_N : y_x=0 xXN:yx=0
测试阶段样本: ∀ x ∈ X T : y x ∈ { 0 , 1 } {\forall x \in X_T : y_x \in \{0 ,1\}} xXT:yx{0,1}

patchcore使用在ImageNet上的预训练网络,用符号 ϕ \phi ϕ表示

符号 ϕ i j = ϕ j ( x i ) \phi_{ij} = \phi_j(x_i) ϕij=ϕj(xi)表示第 i i i个样本 x i ∈ X x_i \in X xiX在网络 ϕ \phi ϕ j j j层feature map
本文使用ResNet50最终输出的spatial resolution blocks的第 j ∈ { 1 , 2 , 3 , 4 } j\in \{ 1,2,3,4\} j{1,2,3,4}

采用网络最后几层输出会出现的问题:

  1. Firstly, it loses more localized nominal information [14].As the types of anomalies encountered at test time are not known a priori, this becomes detrimental to the downstream anomaly detection performance.
  2. very deep and abstract features in ImageNet pretrained networks are biased towards the task of natural image classification, which has only little overlap with the cold-start industrial anomaly detection task and the evaluated data at hand.

本文采用a memory bank M M M(在 patch level),避免过多的偏向imageNet

记第 i i i张图片,第 j j j层的特征图为 ϕ i j ∈ R c × h × w \phi_{ij} \in R_{c \times h\times w} ϕijRc×h×w
特征图上的点用 ϕ i j ( h , w ) = ϕ j ( x i , h , w ) \phi_{ij}(h,w) =\phi_j(x_i,h,w) ϕij(h,w)=ϕj(xi,h,w)

each patch-representation operates on a large enough receptive
field size to account for meaningful anomalous context robust to local spatial variations.
本文采用感受野更大的patch(而不是特征图上的点)

This motivates a local neighbourhood aggregation when
composing each patch-level feature representation to increase receptive field size and robustness to small spatial deviations without losing spatial resolution or usability of feature maps.

记点 ( h , w ) (h,w) (h,w)周围的点集为:
在这里插入图片描述
这个公式可以理解为 以 ( h , w ) (h,w) (h,w)为中心,以 p p p为直径的正方形包围住的点
在这里插入图片描述
那么围绕这些点计算的特征图上的点为
在这里插入图片描述
locally aware patch-feature collection 可以表示为:
在这里插入图片描述
其中 striding parameter: s
最后 PatchCore memory bank
在这里插入图片描述
可以理解为 所有训练集的图片上所有的点 ( h , w ) (h,w) (h,w)
以这个点为中心计算它的邻居点集,得到的特征值
这些特征值的集合作为PatchCore memory bank

Coreset-reduced patch-feature memory bank

根据上面计算的PatchCore memory bank直接用是不现实的,因为太大了。所以需要计算一个 M C M_C MC(小一点的)d代替 M M M
什么样的子集能代替原来的集合呢?
在这里插入图片描述
首先取任意一个子集 M C M_C MC

  • 公式 min ⁡ ∣ ∣ m − n ∣ ∣ 2 \min || m - n||_2 minmn2 的含义:计算集合 M M M中每一个点 m m m到子集 M C M_C MC的距离
    (一般点到集合的距离,定义为该点到集合内所有点的最小距离)
  • 公式 max ⁡ \max max是指在 M M M中找到距离 M C M_C MC最大的点
  • 最终求得距离集合 M M M最近的集合 M C ∗ M_C^* MC

具体的算法
在这里插入图片描述

Anomaly Detection with PatchCore

对于测试图片 x t e s t x^{test} xtest,计算测试图片的patch-feature 得到 m t e s t m^{test} mtest
和上面的过程一样,还是求集合 P ( x t e s t ) P(x^{test}) P(xtest)到集合 M M M的距离,标记距离的两个点为
m t e s t , ∗ ∈ P ( x t e s t ) , m ∗ ∈ M m^{test,*} \in P(x^{test}),m^*\in M mtest,P(xtest),mM
在这里插入图片描述
解释

  • 公式 arg min ⁡ ∣ ∣ m t e s t − m ∣ ∣ \argmin||m^{test}-m|| argminmtestm计算的是 点 m t e s t m^{test} mtest到集合 M M M的距离
  • 然后找到距离最远的点 m t e s t , ∗ m^{test,*} mtest,

计算分数
在这里插入图片描述
N ( m ) N(m) N(m)是指 m ∗ m^* m的最近邻点集,这里实际上是计算了 一个softmax

  • 15
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 7
    评论
### 回答1: "朝着工业异常检测的全面回忆迈进"是指致力于实现在工业生产过程中对异常情况的全面回溯和记录。这样的系统可以帮助企业快速识别和解决异常情况,提高生产效率和质量。实现这样的系统需要采集大量的生产数据,并利用先进的算法进行处理和分析。同时,还需要建立可靠的数据存储和管理系统,确保数据的完整性和安全性。总的来说,实现工业异常检测的全面回溯需要跨学科的协作和技术的支持。 ### 回答2: 在工业系统中,异常检测是一个非常关键的任务,一旦异常被检测到,可以及时采取措施来避免生产线的停滞和工业事故的发生。为了提高异常检测的准确性和效率,研究人员正在不断尝试将人类的记忆方式应用到机器学习中,实现“完全回忆”。 目前,工业异常检测中常用的方法是基于统计学的方法,但这些方法的缺点是需要大量的数据和专业知识,而且无法处理复杂和多变的数据。相反,人类的大脑能够准确地理解环境中的各种信号,并快速地做出反应。为了实现这种类似于人类的记忆功能,人工智能领域提出了不同的方法,如深度学习、神经网络等。 其中,深度学习已经被证明是在工业异常检测中最有效的方法之一,尤其是在处理大量数据时。深度学习模型可以通过输入工业数据和异常数据进行训练,在预测生产过程中的异常时表现出色。但是,为了实现“完全回忆”,还需要解决模型在面对新型异常时的适应问题。 一个可能的解决方案是构建一个基于迁移学习的模型,该模型可以从已有的异常数据中学习到经验,并在发现新型异常时自动适应。此外,研究人员可以尝试使用更加先进的人工智能技术,如注意力机制和增强学习,来提高模型的准确性和可靠性。 总之,通过应用类似于人类记忆功能的深度学习模型和其他人工智能技术,工业异常检测可以更加准确、高效,并可以实现“完全回忆”。这将对工业生产的安全和效率有着积极的影响。 ### 回答3: 近年来,随着物联网技术的快速发展,大量的传感器数据被收集并用于工业异常检测。异常检测是工业生产中非常重要的一个环节,它能帮助企业实时识别和处理生产过程中的异常情况,从而提高生产效率、降低成本、提升产品质量。但工业环境下存在各种噪声、复杂运行条件和复杂的生产过程等挑战,因此确保工业异常检测的精确性至关重要。 为了实现更精确的工业异常检测,研究人员提出了“全面回忆”的概念,旨在通过利用所有可用信息来识别一些异常情况。具体来说,全面回忆从三个方面着手:一是从数据收集开始,尽可能多地收集机器的输出数据。二是利用深度学习等技术有效地处理这些数据,从而进行分类和聚类分析。三是结合专家领域知识,利用额外的信息来完成异常识别和分析。 实现全面回忆的目标需要考虑多个方面的技术挑战。首先,需要设计创新的数据集、流水线和算法,以捕获复杂工业环境中的多方面信息和随时间变化的变化情况。其次,需要利用大规模的计算机资源来实现高效的数据处理和模型训练。此外,还需要设计到位的专家领域知识建模和融合策略,以确保高准确度和高鲁棒性的异常检测。 总之,全面回忆是工业异常检测研究领域的一个重要方向,它将为挖掘大量生产数据提供强有力的支持,有望为工业生产的智能化和智能化水平提高做出重要贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值