【异常检测】patchcore:Towards Total Recall in Industrial Anomaly Detection

该论文提出一种解决工业缺陷检测中冷启动问题的新方法,通过提取和比较patch特征,利用MemoryBank和CoresetSubsampling技术进行异常检测。ResNet-50预训练模型用于提取局部感知的patch特征,提高检测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CVPR2022异常检测论文

论文链接:https://arxiv.org/abs/2106.08265

引言

背景

1.工业缺陷检测非常困难,因为错误可能从细微变化到较大的结构缺陷不等
2.冷启动问题:仅使用无缺陷的图像训练模型。
3.工业异常检测的最佳方法将ImageNet 预训练的模型与异常检测模型相结合。

动机

1.解决以上的问题
2.解决 ImageNet 预训练网络中的深层特征更偏向于自然图像分类任务的问题。

网络结构 

在训练阶段,首先提取中间层特征 ,然后提取patch特征,得到Memory Bank,用coreset Subsampling减小Memory Bank的大小,得到最终的Memory Bank(存储patch特征)。

 在测试阶段,提取测试图片的patch特征,将其patch特征与Memory Bank中的特征进行比较,用NN Search进行异常判别,得到异常分数,进行异常检测和定位。

Locally aware patch features 

PatchCore使用在ImageNet上预先训练的网络φ,采用ResNet-50 / WideResNet-50 进行特征提取

1.创建一个存储块M,存储patch features

2.从中间层获取特征

3. 采用局部邻域聚合的方法来增加感受野,然后合并特征

 具体步骤

 1.提取邻域的特征

 2.合并邻域的特征集合(采用Adaptive Average Pooling),组合feature map

3.局部特征集合

 

 4.遍历整个数据集,取并集,得到特征存储块M

 Coreset Subsampling

用贪心策略进行核心集子采样

伪代码如下:

 

Johnson-Lindenstrauss:输入N个向量,无论他们多少维,都可以把维度降到log N

 降维思路:

 效果:

Anomaly Detection with PatchCore

1.提取Patch特征

2.计算p(x test)到M的距离

实验 

 

 

 

 

 

 

 

 

### 回答1: "朝着工业异常检测的全面回忆迈进"是指致力于实现在工业生产过程中对异常情况的全面回溯和记录。这样的系统可以帮助企业快速识别和解决异常情况,提高生产效率和质量。实现这样的系统需要采集大量的生产数据,并利用先进的算法进行处理和分析。同时,还需要建立可靠的数据存储和管理系统,确保数据的完整性和安全性。总的来说,实现工业异常检测的全面回溯需要跨学科的协作和技术的支持。 ### 回答2: 在工业系统中,异常检测是一个非常关键的任务,一旦异常被检测到,可以及时采取措施来避免生产线的停滞和工业事故的发生。为了提高异常检测的准确性和效率,研究人员正在不断尝试将人类的记忆方式应用到机器学习中,实现“完全回忆”。 目前,工业异常检测中常用的方法是基于统计学的方法,但这些方法的缺点是需要大量的数据和专业知识,而且无法处理复杂和多变的数据。相反,人类的大脑能够准确地理解环境中的各种信号,并快速地做出反应。为了实现这种类似于人类的记忆功能,人工智能领域提出了不同的方法,如深度学习、神经网络等。 其中,深度学习已经被证明是在工业异常检测中最有效的方法之一,尤其是在处理大量数据时。深度学习模型可以通过输入工业数据和异常数据进行训练,在预测生产过程中的异常时表现出色。但是,为了实现“完全回忆”,还需要解决模型在面对新型异常时的适应问题。 一个可能的解决方案是构建一个基于迁移学习的模型,该模型可以从已有的异常数据中学习到经验,并在发现新型异常时自动适应。此外,研究人员可以尝试使用更加先进的人工智能技术,如注意力机制和增强学习,来提高模型的准确性和可靠性。 总之,通过应用类似于人类记忆功能的深度学习模型和其他人工智能技术,工业异常检测可以更加准确、高效,并可以实现“完全回忆”。这将对工业生产的安全和效率有着积极的影响。 ### 回答3: 近年来,随着物联网技术的快速发展,大量的传感器数据被收集并用于工业异常检测异常检测是工业生产中非常重要的一个环节,它能帮助企业实时识别和处理生产过程中的异常情况,从而提高生产效率、降低成本、提升产品质量。但工业环境下存在各种噪声、复杂运行条件和复杂的生产过程等挑战,因此确保工业异常检测的精确性至关重要。 为了实现更精确的工业异常检测,研究人员提出了“全面回忆”的概念,旨在通过利用所有可用信息来识别一些异常情况。具体来说,全面回忆从三个方面着手:一是从数据收集开始,尽可能多地收集机器的输出数据。二是利用深度学习等技术有效地处理这些数据,从而进行分类和聚类分析。三是结合专家领域知识,利用额外的信息来完成异常识别和分析。 实现全面回忆的目标需要考虑多个方面的技术挑战。首先,需要设计创新的数据集、流水线和算法,以捕获复杂工业环境中的多方面信息和随时间变化的变化情况。其次,需要利用大规模的计算机资源来实现高效的数据处理和模型训练。此外,还需要设计到位的专家领域知识建模和融合策略,以确保高准确度和高鲁棒性的异常检测。 总之,全面回忆是工业异常检测研究领域的一个重要方向,它将为挖掘大量生产数据提供强有力的支持,有望为工业生产的智能化和智能化水平提高做出重要贡献。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值