CNN感受野概念及计算

感受野是卷积神经网络中关键的概念,指的是某一层输出的一个元素所对应的输入层区域大小。例如,图1显示第三层的一个单元对应着第二层2x2的感受野,进一步追溯到原始输入层(图2)则是5x5的区域。这个概念帮助理解特征提取的过程。
摘要由CSDN通过智能技术生成

CNN感受野

在卷积神经网络中, 决定某一层输出 结果中一个元素所对应的输入层的区域大 小, 被称作感受野 ( receptive field) 。 通俗 的解释是, 输出 feature map 上的一个单元 对应输入层上的区域大小。

在这里插入图片描述

图1

在图1中,第三层中的一个单元对应第二层中的感受野是一个2×2的区域,在原图(第一层)对应的感受野是一个5×5的区域。

在这里插入图片描述

图2

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值