傅里叶变换、拉普拉斯变换、z变换(一)

周期 对应 离散

非周期 对应 连续

离散对应周期可以理解为:一个连续信号与理想冲激串信号进行时域相乘,即频域卷积,由于冲激串的频域也是冲激串,所以会造成一个周期性的现象。换而言之,离散的周期性是由采样信号带来的。

傅里叶级数

傅里叶级数的内涵其实是所有的周期信号都可以用三角信号合成。

1、2pi周期

将周期 T=2\pi的函数f(x)可以表示为jiantou

公式(a)

a_{n},b_{n}可以如下计算:

2、一般周期

当周期 T=2l时,通过如下代换构造f(z),其周期为T=2\pi

则函数f(x)可以表示为

公式(b)

3、复数形式

欧拉公式

周期频谱

1、单边频谱和双边频谱是描述同一个信号的不同方式,通过两种频谱都可以获得信号的全部信息。

2、频谱

幅度谱:幅值与频率的关系叫做幅度频谱

相位谱:相位与频率的关系叫做相位频谱

1、单边频谱

公式b可以化为仅有余弦函数的形式

公式(c)

定义角频率为

进一步将x替换为tf(t)可以表示为

可以看出,任意周期的函数可以表示为一系列不同频率下,确定幅值、相位的余弦函数的代数和。这些余弦函数的角频率分别为: w,2w,3w,...,幅值 A_{n}和相位 \Phi _{n}随角频率变化。

以角频率为横坐标,画出这些余弦函数的幅值和相位,这就是函数f(t)的频谱。其

由于此时频率不含负数,所以称为单边频谱。

2、双边频谱

基于欧拉公式,公式c可以表示为

系数 c_{n}是一个复数,作出它的幅值和相位与频率之间的关系,同样能够得到函数的频谱。

由于此时的频率存在负数,因此称为双边频谱。

非周期频谱

非周期信号可以认为其周期为无穷大,即T=2l\rightarrow \infty,则任意两谱线之间的间距\frac{\pi }{l}趋向0,则频谱连续。

类比周期信号的傅里叶级数,非周期信号的傅里叶级数(并无这个概念)可以表示为

则傅里叶逆变换可以表示为

脉冲信号频谱

1、矩形信号

傅里叶变换:

频谱(包含幅度与相位):

非原点矩形信号

F(w)=E\tau Sa(\frac{w\tau}{2})*e^{jwT_{0}}

T_{0}为矩形波偏离的位置。

2、理想脉冲信号

原点冲激

非原点冲激

3、脉冲串信号

脉冲串信号为周期信号,先将其转换为傅里叶级数形式,然后,对该形式进行傅里叶变换。

冲激串的频谱依然为冲激串

时域间隔即时域周期为:T

频域间隔即频域周期为:\Omega =\frac{2\pi}{T}

对于非脉冲串的离散信号而言,其时域间隔和频域间隔分别为

时域间隔:\Delta t=T_{s}=\frac{1}{N*\Delta f}=\frac{1}{B}

频域间隔:\Delta f=\frac{1}{N*T_{s}}=\frac{1}{T}

其中B为频谱带宽,T为离散信号的时域周期,T_{s}为采样信号的周期,即两个时域采样点之间的间隔。

傅里叶变换

傅里叶变换需要满足狄利克雷条件。

1、绝对可积→周期信号没有傅里叶变换

2、

离散傅里叶变换

1、离散傅里叶变换(DFT)

离散傅里叶变换主要用于计算机实现对信息的处理,由于计算机只能处理有限长度的离散数据,而周期序列的离散傅里叶级数恰好满足这些特征:只需要对计算机输入在信号的一个周期 T内采样得到的N个数据点(采样周期为T_{s}),周期离散信号可以表示为

不同于连续信号的傅里叶级数,这里频点间距由\frac{2\pi }{T}转为\frac{2\pi }{N}。由模拟域转换到数字域了,连续信号的频点间距即为其角频率,而数字域的频点间距需要进行一个相应的换算,即

w=\frac{2\pi}{T}=\frac{2\pi}{N}*\frac{1}{T_{s}}

离散傅里叶变换可以定义为

逆变换为

由公式可以得出一个周期内的采样点数越多,频谱分辨率越小,即参与DFT的点数越多,频谱分辨率越精确。

2、快速傅里叶变换

快速傅里叶变换(FFT)利用了虚指数项的对称性等特点,对离散傅里叶变换(DFT)的计算实现了简化,从而提高计算机的求解速度,其计算结果与离散傅里叶变换(DFT)是完全一致的。本节介绍一种快速傅里叶变换的算法,它适用于序列的周期为2的整数次幂(N=2^{l})的情况。

首先将离散傅里叶变换中的奇数项和偶数项分离

上式中,将原周期序列 中的奇数项和偶数项分别看作以 N/2 为周期的两个新序列,那么当 n的取值范围为 0∼N/2−1 时,上式中的两个求和项显然满足离散傅里叶变换的定义式,即:

此时,就将 N 个数据点的离散傅里叶变换(N点 DFT),转化为了两个 N/2 个数据点的离散傅里叶变换,但考虑到 n 的取值范围,显然只计算出了“ N点 DFT ”的前半部分,还需要找到后半部分的值。根据虚指数的对称性:

“ N点 DFT”后半部分的值为:

因此,“ N点 DFT ”的计算结果可以用奇偶分离后两个“ N/2 点 DFT ”的计算结果来表示,以 N=8 为例,画出示意图:

对于“ N/2 点 DFT ”还可以对该序列继续进行奇偶分离,将其简化为“ N/4 点 DFT”:

继续进行奇偶分离,直至分解为“ 1 点 DFT”:

根据定义,原“ N 点 DFT ”的计算量为:N^2 次复数乘法运算和 N(N−1) 次加法运算:

而参考前述示意图,当N=2^l 时,奇偶分离后的快速傅里叶变换( N 点 FFT )包含 l级,每级进行 N/2 次复数乘法和 N次加法运算,显然计算得到了简化。

周期信号的单边频谱与双边频谱 - 知乎 (zhihu.com)

快速傅里叶变换(FFT)基本原理与应用实例 - 知乎 (zhihu.com)

  • 13
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值