【论文阅读】深度学习在过冷沸腾气泡动力学分割中的应用

本文探讨了深度学习在过冷沸腾条件下气泡动力学的分割应用,通过迁移学习减少数据标注负担。研究了经典的YOLO算法结构和损失函数,以及不同数据量和优化器对模型性能的影响。结果展示了各种气泡类型和噪声条件下的检测效果,以及对传统方法的改进。文章还分析了气泡行为参数与检测性能的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Application of deep learning for segmentation of bubble dynamics in subcooled boiling
深度学习在过冷沸腾气泡动力学分割中的应用
期刊信息:International Journal of Multiphase Flow 2023
级别:EI检索 SCI升级版工程技术2区 SCI基础版工程技术3区 IF 3.8
原文链接:https://doi.org/10.1016/j.ijmultiphaseflow.2023.104589
全文翻译:https://pan.baidu.com/s/1WBDB0WkmhXjdVl0loVZk_w?pwd=6666
1、使用迁移学习降低数据标注工作量
2、前人相关研究介绍4-5条、主要贡献说明:4条
3、实验载体详细参数,实验装置图
4、实验过程中气泡状态展示:正常气泡、非椭圆形气泡、合并、流动、紧密排列
5、经典图像算法介绍(商用软件、开源代码、CNN)
本文图像处理算法流程图:在这里插入图片描述
6、YOLO算法架构(主干、颈部、头部)及流程说明,主干架构中各个模块介绍

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里守约

你的鼓励将是我创作的最大动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值