高数打卡10

计算下列对面积的曲面积分:
∬ ∑ ( x + y + z ) d S \iint_{\sum}(x+y+z)dS (x+y+z)dS
其中 ∑ \sum 为球面 x 2 + y 2 + z 2 = a 2 x^2+y^2+z^2=a^2 x2+y2+z2=a2 z ≥ h ( 0 < h < a ) z\ge h(0<h<a) zh(0<h<a)的部分.
解:在 ∑ \sum 上, z = a 2 − x 2 − y 2 . ∑ z=\sqrt{a^2-x^2-y^2}.\sum z=a2x2y2 . x O y xOy xOy面上的投影区域 D x y = { ( x , y ) ∣ x 2 + y 2 ≤ a 2 − h 2 } . D_{xy}=\{(x,y)|x^2+y^2\leq a^2-h^2\}. Dxy={(x,y)x2+y2a2h2}.
由于积分曲面 ∑ \sum 关于 y O z yOz yOz面和 z O x zOx zOx面均对称,故有
∬ ∑ x d S = 0 ∬ ∑ y d S = 0. \iint_{\sum}xdS=0\\ \iint_{\sum}ydS=0. xdS=0ydS=0.
于是
∬ ∑ ( x + y + z ) d S = ∬ ∑ z d S = ∬ D x y a 2 − x 2 + y 2 1 + x 2 a 2 − x 2 − y 2 + y 2 a 2 − x 2 − y 2 d x d y = a ∬ D x y d x d y = a π ( a 2 − h 2 ) . \iint_{\sum}(x+y+z)dS=\iint_{\sum}zdS\\ =\iint_{D_{xy}}\sqrt{a^2-x^2+y^2}\sqrt{1+\frac{x^2}{a^2-x^2-y^2}+\frac{y^2}{a^2-x^2-y^2}}dxdy\\ =a\iint_{D_{xy}}dxdy\\ =a\pi(a^2-h^2). (x+y+z)dS=zdS=Dxya2x2+y2 1+a2x2y2x2+a2x2y2y2 dxdy=aDxydxdy=aπ(a2h2).

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值