高数打卡11

计算下列对坐标的曲面积分:
∬ ∑ z d x d y + x d y d z + y d z d x \iint_{\sum}zdxdy+xdydz+ydzdx zdxdy+xdydz+ydzdx
其中 ∑ \sum 是柱面 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1被平面 z = 0 z=0 z=0 z = 3 z=3 z=3所截得的在第一卦限内的部分的前侧;

在这里插入图片描述
由于柱面 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1 x O y xOy xOy 面上的投影为 0 , 0, 0,因此 ∬ ∑ z d x d y = 0. \iint_{\sum}zdxdy=0. zdxdy=0.

D y z = { ( y , z ) ∣ 0 ≤ y ≤ 1 , 0 ≤ z ≤ 3 } D z x = { ( x , z ) ∣ 0 ≤ z ≤ 3 , 0 ≤ x ≤ 1 } D_{yz}=\{(y,z)|0\leq y\leq 1,0\leq z\leq 3\}\\ D_{zx}=\{(x,z)|0\leq z\leq 3,0\leq x\leq 1\} Dyz={(y,z)0y1,0z3}Dzx={(x,z)0z3,0x1}
∑ \sum 取前侧,故
∬ ∑ z d x d y + x d y d z + y d z d x = ∬ ∑ x d y d z + ∬ ∑ y d z d x = ∬ D y z 1 − y 2 d y d z + ∬ D z x 1 − y x d z d x = ∫ 0 3 d z ∫ 0 1 1 − y 2 d y + ∫ 0 3 d z ∫ 0 1 1 − x 2 d x = 3 2 π \iint_{\sum}zdxdy+xdydz+ydzdx=\iint_{\sum}xdydz+\iint_{\sum}ydzdx\\ =\iint_{D_{yz}}\sqrt{1-y^2}dydz+\iint_{D_{zx}}\sqrt{1-y^x}dzdx\\ =\int_{0}^{3}dz\int_{0}^{1}\sqrt{1-y^2}dy+\int_{0}^{3}dz\int_{0}^{1}\sqrt{1-x^2}dx\\ =\frac{3}{2}\pi zdxdy+xdydz+ydzdx=xdydz+ydzdx=Dyz1y2 dydz+Dzx1yx dzdx=03dz011y2 dy+03dz011x2 dx=23π

  • 5
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值