【RAG 论文】AAR:训练一个LLM喜欢的检索器来做RAG

论文:Augmentation-Adapted Retriever Improves Generalization of Language Models as Generic Plug-In
⭐⭐⭐
ACL 2023, Tsinghua & Microsoft,arXiv:2305.17331

论文速读

以往 RAG 的工作通常联合微调 retriever 和 LLM 导致紧密耦合,但经常是 LLM 作为一个 black-box 是无法微调的。

本文提出 AAR(Augmented-Adapted Retriever)模型:它选择一个小型的 encoder-decoder 架构的 LM 作为 source LM,并让 retriever 学习 LM 的 preference(“偏好”),从而让 retriever 适配 LM,由于本工作发现不同的 LM 的 preference 是类似的,所以训练好的 retriever 可以作为一个"通用插件"用在不同的 LM 以及不同的 downstream tasks 上。

具体来说,有一个 pre-trained retriever,一个小型的 encoder-decoder LM 作为 source LM,有一个 NLP 任务作为 source task。对于一个 question,首先让 retriever 检索出 N 个 docs,然后利用 source LM 对这 N 个 docs 使用 FiD cross-attention 机制(FiDAtt)为每个 doc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值